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Abstract

This project investigates depth dependencies in Electrical Impedance Tomography (EIT)
with the Complete Electrode Model (CEM). It explores the relationship between the
placement of an object in a domain and the quality of the reconstruction of it.

In this project the necessary theory to understand the reconstruction process of EIT
is presented. This theory includes proof of existence and uniqueness of a solution with
the CEM. Furthermore, additional theory on Singular Value Decomposition and Fréchet
derivatives is presented, before using simulations on a variety of setups to obtain results.

The result for the depth dependency in EIT with the CEM is that the object’s dis-
tance to the electrodes has a significant influence on the quality of the reconstruction. As
expected the quality of the reconstruction is improved the closer the object is to the elec-
trodes. Thus, the setup, i.e. the placement of the electrodes, is essential when searching
for an object.
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Abstract (Danish)

I dette projekt underspges dybdeathaengighed i elektrisk impedanstomografi (EIT) med
den fuldsteendige elektrodemodel (CEM). Vi udforsker forholdet mellem placeringen af et
objekt i et domaene og kvaliteten af en rekonstruktion af objektet.

Vi prasenterer den ngdvendige teori for at forstd processen, der bruges, til rekon-
struktion i EIT. Dette omfatter bevis for eksistens og entydighed af en lgsning med CEM.
Derudover praesenterer vi teori for singuleer-veerdi dekomposition og Fréchet afledte, for
vi bruger simuleringer pa forskellige setups til at opné resultater.

Resultatet for dybdeafhzengigheden af EIT med CEM er, at et objekts afstand til
elektroderne har stor indflydelse pa kvaliteten af en rekonstruktion. Som forventet gges
kvaliteten i rekonstruktionen, nar et objekt flyttes teettere pa elektroderne. Dvs. opsat-
ningen, altsa placeringen af elektroder, er essentiel, nar man sgger efter et objekt.
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Chapter 1

Introduction

Electrical Impedance Tomography (EIT) is the name of the technique that recovers the
interior conductivity of an object by sending current trough the surface and measuring
the responsive voltages. More specifically, the current is sent trough electrodes attached
to the surface of the object. EIT has many practical applications (and different names
in different fields). Some of these are medical EIT [2] and search for irregularities in
materials [6]. From an economical point of view this technology is very interesting, since
electrodes are cheap and easy to transport compared to other medical imaging techniques.

The Complete Electrode Model (CEM) assumes that current is sent trough a finite
number of electrodes that does not cover the full surface in contrast to The Continuum
Model that assumes the whole surface is covered completely by electrodes. In real-world
problems the the CEM will be more relevant than the Continuum Model, because it is
troublesome and expensive to put electrodes around the whole domain. The practical
aspects of the CEM are the reasons that we have chosen to investigate this model.

The PDE that governs EIT is

V.-oVu =0,

where o is the conductivity and u is the electric potential of the domain, which we de-
note the potential. The difference between the Continuum Model and the CEM is in
the boundary conditions. Two important problems are discussed concerning the CEM -
the forward and the backward problem. A correspondence between currents and voltages
measured on the electrode are given by a map R, that takes in currents and maps the
corresponding voltages. The forward problem is therefore to find the mapping R, given
0. The backward problem or the inverse problem is to find the conductivity, o, given
knowledge of the currents and voltages on the electrodes, i.e. R,.

The purpose of this project is to study how EIT with the CEM can be used to recon-
struct small perturbations in the conductivity. Furthermore, the purpose is to investigate
if there is any depth dependency in EIT with the CEM. By depth dependency we mean
if the model reconstructs perturbations better near the electrodes compared to deeper in
the domain, i.e. if the distance from the electrodes to the object has an impact on the
reconstruction.

In order to accomplish this, we give a proof of existence and uniqueness of solutions
in EIT with the CEM in Chapter [2| followed by a simple example. Since the inverse
problem is non-linear, we linearize it with the help of the Fréchet derivative in Chapter
Bl We will denote the linearized inverse problem around o as the inverse problem for
simplification. We show how to solve the inverse problem, for small perturbations h



in Chapter This requires basic knowledge of Singular Value Decomposition (SVD),
which is also introduced in this chapter. In Chapter [5| we do numerical analysis in two
dimensions where the focus is primarily to investigate the depth dependency on the unit
disc with three different electrode configurations.



Chapter 2

The Complete Electrode Model

In this chapter we introduce the Complete Electrode Model and prove existence and
uniqueness of a solution in the model. The proves in this chapter are inspired by [8] and
reworked in details. We will start off by going through the assumptions of the model.

2.1 Setting Up the Model

We let 2 be an open, bounded domain in two or three dimensions, R", n = 2,3, where
the boundary 99 is C1. We let L € N be the number of electrodes on the boundary. We
assume that the electrodes, e;, | = 1,2,---, L, are open connected subsets of 902 whose
closures are disjoint, i.e. ¢, Ne =0, k # [. For the conductivity, o, we assume that
it is bounded, i.e. o € L*(€2). To account for the resistance between the electrodes
and the surface, we introduce the contact impedance coefficients and denote them z;,l =
1,2,---, L. We denote the current vectors I and the voltage vectors U. We note that we
will only consider current patterns that satisfy

d n=o. (2.1)

We introduce the space
H=H'Y(Q) x Cr,

where

@ =57 > C | [ (1@ +97@)P) do <o
Q

is a Sobolov space, see Appendix

Proposition 1. Let Q, o and the electrodes e; satisfy the assumptions above, and let
z1€C, 1=1,2,---,L, satisfy Re z; > 0.
Assume that u € HY(Q), U € C* and that u is a weak solution to

V-oVu=0 1inQ (2.2)

subject to the boundary conditions on 02

0
u—i—zlaa—u:Ul one, l=1,2,---,L, (2.3)
v



Ou g
05 = 0 on 8Q\l:LJ1 €. (2.4)

Assume furthermore that for a prescribed current pattern I = (I)F, € RE,

)
/aaé‘: s =1, (2.5)

€l

Then (u,U) € H satisfy
B((u,U), Zfzvz, (2.6)

where B : H x H — C is the sesquilinear form defined as

Q

L
B ((u,U),(v,V)) = /JVU~VT1 dx—i—zzll/(u—Ul)(@— Vi) dS,
=17

for any (v,V) € H.

Conversely, if (u,U) € H satisfies for all (v,V) € H, then (u,U) is a weak
solution to -.
Proof. Let us first assume that (u,U) € H satisfies (2.2)-(2.5). We want to show that
(u,U) then satisfies for any (v,V) € H.
We choose an arbitrary (v,V) € H. Taking equation and multiplying with v and
integrating over ) we get

/EV-UVudwzo.
Q
By Green’s first identity, this becomes

/EV-JVu dm:—/JVu-Vﬁd:r—i—/a%T) dS =0 (2.7)
Q Q o9
for all v € H'(Q2), where V- oVu € LQ(Q)
We can combine the assumptions ([2.3) and (2.4 . ) to
Lo
Z o (U — )X, (2.8)
=1

where X, is the characteristic function on electrode e;. Inserting (2.8) into (2.7)) yields

L
1
—/0Vu~V17d:E+/ Z—Ul—uxldS—O &
o =1
tq
d — —u)v dS = 2.
/UVU Vo :17+ZZl/(Ul w)o dS =0 (2.9)

Q

Using (2.3) and inserting the result from (2.5) we get



ou

’U,:Ul—Zlda <~
/U dS/<UlZldau> dS:U|€l|leIl ~
ov
e e;

/u dS —Ule| + zI; = 0.
€l

Using the last equality, we can multiply coefficients on the left hand side for all L electrodes
and take the sum of them, and the sum will still be zero.

L 1.
Z* 1 /u—U|61|+ZlIl = 0. (2.10)

—/UVu Vvd:z:—&—Z;l (U —u)v dS
o =1 "7
|
il ds — =
+;Z; 1 /u S U|61‘+le 0 <
/UVu~V1_)dx
Q
Ly L
— - v dS — V, d ¥ = Vi1
+;Zl /(u U)o dS /uVl S +WViUle| ;v” &
— o o —
/UVU~V6dx
Q

~

I

M=
:‘\‘I
i

1 R _ _
+y° /(u—Ul)(v—Vl) ds — UVile| + UVilel|
=1

2l

N
I
A

€l

L L
1 _ _
/O’VU'V@dl‘-i-E Z—l/(u—Ul)(ﬁ—‘/})dS:E i,
=17

Q =1

which is exactly (2.6]).
For the converse part we assume that (u,U) € H satisfies (2.6 for any (v,V) € H

and want to prove that (u,U) also satisfies (2.2))-(2.5)) with u as a weak solution. This is
done by considering specific choices of (v, V).
First choice is v € C°(Q2) and V = 0. From (2.6]) we see that

/UVU~V17dJ::0.
Q

Since v € H(2) u satisfies (2.2) in the weak sense, i.e. V-oVu =0 € L?(). Therefore
by (2.7) we have that



/JVU -V dx = /O’%’U ds, (2.11)
Q 19]9)

v € HY(Q) arbitrary. Combining (2.11)) with (2.6]), choosing V' = 0 again, we get
L
ou _ 1 _
/aav dS+ZZ—l/(u—Ul)v ds =0.
o0 =1 e

Using that
/(u —U)v dS = /Xl(“ — U)o dS,
oQ

€l

ou L oq
/ (g&/Jr;Zle(uUl))vdS—O. (2.12)

o0

we have that

Since v is arbitrary we see that

ou -1
a—y+;z—lxl(ufUl):0 on 0N.

That is (2.8), which means that and ( -) are satisfied by (u,U).
Now let V € CF be arbitrary. Insertlng (2.11)) in . we get

Lo _ ou Lo -
;m/aayvdm;m/(um)wm o
L ) €]

;IM /aa—v dS+/Z =X, (u—U) (@ = V) o

a0 aq =1

L L
— ou 1 _ 1 —
l_glll‘/l—/ (Uay—Fl_ElZZXI(U—U[)>UCZS—Z_EIZI/(U—UZ)‘/Z ds.

o0

We find that the first term on the right side is zero because of (2.12)) so that we have

Since V € C' is arbitrary, we must have that

1
Il-i-;/(u—Ul)dS:O, l=1,2,--- L,
1

€l



which is equivalent to

1
; (Ul_u)dS:Ih l:172’...7L'
1

€l

Using this with (2.3 we obtain (2.5]) as

ou 1

€1 €l

O

We have now shown that a solution to ([2.6)) also is a weak solution to the PDE problem

(2.2)-(2.5).
Now we would like to show that the PDE problem ([2.2)-(2.5) has a unique solution
by showing that the weak formulation (2.6 has a unique solution.

2.2 Existence and Uniqueness

To obtain existence and uniqueness of a solution to our model we would like to use the
Lax-Milgram theorem in Appendix
By setting

L
B((u,U),(u,U)):/a\w|“‘dx+zi/|wUl|2d5:o,
=1 4
Q e

we see that our operator B does not satisfy the coercivity, since the above does not imply
that (u,U) =0,
u=U; =---=Up = const.

To avoid this problem, and still be able to use the Lax-Milgram theorem, we introduce
the quotient space

H=H/C,
where the elements (u,U) € H and (v,V) € H are equivalent if

u—v=U,—-V; =---=U — VI, = const.

The space H can be equipped with the quotient norm
1/2
. 2 2
1w, U] = it (Jfu = el ) + 10 = ClE) (2.13)

but showing that our operator B satisfies the conditions of the Lax-Milgram theorem is
much easier with a different norm in H, namely

I 1/2
1(w, U)], = (IIVUIi2(Q> +Z/ u(@) - Uz|2d5> : (2.14)
I=1v¢

In order to use this norm instead, we show that the two norms are equivalent.



Lemma 2. The norms (2.13) and (2.14) are equivalent; i.e., for some constants 0 < A <
A < o0,
M, D), < 1w, U)] < All(u, U)], (2.15)

for all (u,U) € H.

Proof. We start with the first inequality. For (u,U) € H, we choose a constant ¢ € C
such that
2 2 2
lu = el + U —cllee < [(w,U)|” +¢ (2.16)

for € > 0 arbitrary. Since
0<(a—b)?=a*>+b*—2ab & 2ab<a®+ 1,

we have that
(a+0)* = a® + b + 2ab < 2(a® + b?). (2.17)

If we modify the norm (2.14]) by using the triangle inequality and (2.17)) we get

L
@I = 19 = Ol + > [ fu(e) == Wi =) ds

I=17¢
L

<9 = Oy + Y [ (lula) = el +[i = cl)*dS
I=17¢
L

2 2 2

< U9 = Oy + Y [ 2 (uw) = + 0 - ) s

I=17¢

L L
:||V(u—c)||iZ(Q)+QZ/ u(z) — e’ dS +2) e [U —c]*.  (2.18)
1=1"¢ =1

Since € is bounded and 99 is C' we can apply the Trace Theorem in Appendix to
get a bound on the second term of (2.18)) as

L
2 2 2
23" / [u() — ? dS < 2 u — el 2 o0y < Ci lu — el -
=1 1

This gives us a bound on the norm (2.14))

L L
1w, D2 < IV (w = &)l 72y + 22/, ju(z) = c[*dS+2)_ || [Ur = ¢f?
I=1"¢€ =1
< IV (u = €)llz2qy + O lu = el ) + 210 = cllee Jpax el
< llu = el ) + Ca llu = el ay + 2100 = ellea max e
< O (Jlu— el oy + 100 = el
By this is bounded by
I O)I2 < Cs (I U)]* +¢) -
Since this holds for arbitrary €, the first inequality of is proved.

Now we prove the second part of the inequality ||(u,U)| < A|[(w,U)|,. This is
done with a contradiction proof. If we assume that the claim is not true, then there



must exist a sequence (z,,Z,) € H for which there exists a constant M > 0 such that
l(zn, Zo)|l, <M V¥neNand ||(z,,Z,)] = oco.

This means that given any n € N we can pick out a subsequence, which we again
denote (2, Z,), such that

1 M
1(zn, Z)| >0M = = >
n = (zns Z0)|
Now let us pick the normalized sequence (u,,Uy) = ”E;Lg;g” Then we have that
Gy Zn) M 1
[(un, Un)ll = 1, 1(un, Un)ll,. = - < <. (2.19)
(2, Z3) | [z, Zn)l

Now let (¢,,) be a sequence in C and let
(U)n,Wn) = (Un - CnaUn - Cn)~
We have that
2. 2 2 2 2
L= | (n, Un)IP = 0 (I = el ) + 10 = el ) < lwnllfr gy + IWallZe
since the norm (2.14]) takes the infimum over all constants in C. Now, by choosing the
constants (c,) in the right way, we can get infinitely close to the norm ||(un,U,)||. For
instance we can choose €, < % yielding
2 2 2 2 1
lwnllzz @) + IWallee = llun = eallz gy + 1Un = enllee < ll(un, Un)ll +en <14 .
This gives us the inequality
2 2 1
1< Jlwnllf gy + Whllee <1+ . (2.20)

Since € is open and bounded we can use the compact imbedding theorem in Appendx

[A77 that gives us
HY(Q) cc L*(Q).

Since ||wn||i1(9) <1+ 1 <2, (w,)is bounded. It follows from the definition of contin-
uous and compact imbeddings in Appendix that (w,,) has a subsequence, which is a

Cauchy-sequence in L?(£2). We denote the subsequence (w,,). L*(Q) is complete, so (w,,)
converges. That is, for some w € L?(2)

Wy, — W for n — oo. (2.21)

However, we notice that

1
IVwall L2 (@) = IVunllpaiy < l(un, Un)ll. < =, (2.22)

which means that, (w,,) is a Cauchy sequence in H'(2) that converges because H*() is
complete. Furthermore, the limit satisfies Vw = 0 so that w = const = ¢g.

From ([2.22) we have for n € N

L

1

> T = N U = [V e + Y [ unle) = Unf? aS
=1

> /|un(z) U dS = / (W — co) — (Wt — ¢0)[2 dS.

(2.23)



Using that (f —g.f —¢) = If I + lg|” — 2Re (f,g) we get

> [ lw@) - o) as

+ / |(Wni — co)|? dS — 2Re /(wn —co)(Wh —¢o) dS
el

€1l

> —2|Wp1 — col / lwy, () — co| dS + Wiy — col?|eis (2.24)

€l

for each | = 1,2..., L. Rearranging (2.24) we get

1
Wi — col?ler] < - + 2|Wh — cof / |wp (x) — co| dS. (2.25)
el

Now considering the relation between one element and the norm, we notice that |W,, ;| <
Wallce < llwnllgr) + Wallee <1+ L where the last part is seen from (2.20). From
(2.25)) using the triangle inequality we now see that

1
Wi — col?lel| < - + 2(|Whi| + |eol) / |wn () — o] dS

€
1 1
< *+2(1+*+‘C(]D/‘wn—00| ds. (226)
n n
€l

Rewriting the last integral and using Hoélder’s inequality we get

/ fwn — col dS = / = ol 4 < lxall 2o 0m — coll 2 o0
oN

€l

= |€l|1/2 [|wn — COHL2(69) :

Using the above in (2.26)) followed by the trace theorem yields

1 1
Wt = colled < -+ 200+ 1+ laol) [ un = co] dS

€l

1 1 1/9
s+ 2(1+ -t lcol)led| '/ [|wn — coll12(00)
< 2O+ 4 oDl an — coll ey -
Since w,, — ¢o in H 1(Q)7 wee see that W, ; converges to ¢y. However, we also must have

L= [|(n, Un)I* < wn = coll gy + [Wa = collcz = 0, (2.27)

which gives us a contradiction. Hereby the second norm inequality must be true, so we
conclude that ||-|| and ||.||, are equivalent norms in H. O

In the following we will use ||-||, when proving existence and uniqueness with the
Lax-Milgrams theorem.

10



Theorem 3. Suppose that there are strictly positive constants g, 01 and Z such that

o] <o, (2.28)
Re 0 > oy, (2.29)

and
Rez>7Z forl=1,2,--- L. (2.30)

Then for a given current pattern (L), satisfying (2.1), there is a unique (u,U) in H
satisfying

L
B((w,U),(v,V)) =Y LV, (2.31)
=1

for all (v,V) € H.

Proof. We apply the Lax-Milgram lemma. To do this we check the three conditions for
B.
We have sesquilinearity since for ay,as € C and (uy,U1), (uz,Us), (v, V) € H we see

B (a1 (u1,Ur) + az(uz,Us), (v,V))
= /gV(a1u1 + OéQ’LLg) -Vou dx
Q

L
1 _
+Z* (041U1+OZQUQ 70[1U1’l *042U2,l>(17*‘/l) dsS
=1 2

€l

Zal/UVU1'V’l_J dx—|—a2/UVu2-V17 dx
Q Q
Ly B
—|—O¢1Z_Zlﬁl/(ul — Ul,l)(@ — ‘/2) ds
= o

L
1 _
vasy /(u2 _Up)(5— Vi) dS
=1ty

- Ole ((ulaUl)ﬂ (U’V)) + a2B ((UJZaUZ)a (’U,V)) )

11



and for 31,2 € C and (u,U), (v1,V1), (v2,V3) € H we get

B ((uw,U), p1(v1,V1) + f2(v2,V2))
= /JVU . V(Blf)l + 6262) dx

Q
L

1 _ _ _ _
"‘Z* (u—Up) (101 + Bave — f1Vaiy — BaVay) dS
=1 A

=5 /aVu Vi dm+62/UVu-V172 dx
Q Q

L
_ 1 _
+ 1 E ;l/(u— Un)(v1 — Vi) dS
=1 e

N‘;_n

/U—Ul ’02—‘7271)d5

€l

R
= BlB ((U’U)’ (Ulavl)) + BQB ((U’U)’ (UQ,VQ))

Secondly, we want to show boundedness. That is there exist a constant v > 0 such
that |B(a,b)| <y |lall, [[b]],.

Let a = (u,U) and b = (v,V). By using the assumptions that Re(z;) > Z for all
1=1,2,---,L and |o| < 07 along with the fact that ﬁ < m < % we get

Q

L
|B(a,b)| = /JV’LL-V’E dﬁc—i—zzl/(u—Ul)(T)—Vz) dsS
=1

IN

/JVu Vo dx| + Z /u—Ul (v —V;) dS

Q

/|0Vu V| dx+z /lu—Ul|‘v—V| ds

IN

_ 1 5
§01/|VU~V1}| dx+ZlZ;/|uUl||vVl| s
Q e

< max <01, > (/|Vu Vi d:c+Z/XEl lu— Uyl |v - Vi dS)

If we now use Hélder’s inequality, the fact that || Vul[ 2 (o) < [(w, U, ||Xe, (u— Ul)HLz(Q) <

12



lw D)l and X, (0= V)| aqy < 10 V)], Then we have

1
50,0 < max (o1, ) (190 195020

3 e 0= Ol e - mum)

< max (01, ) (IO [9ol20
L
+Z 1w, O [1X., (&~ W)\!m))
= max (a;) I, U, (vmm) +Z X, (@ )||L2(Q)>
) IO, ((v,vm* £ <v,V>||*>

=1

NI =

1
—max (o1, ) (L4 D DL @ V)L,
= L, bl

as desired.

The last thing we need to show is coercivity. That is there exist a constant § > 0 such
that |B(a,a)| > 6 ||a’.
Let

L
lall? = l(w, U)II = [Vl 720 +Z/|U*Uz\2 s
I=i

and

L
1
B = 2 — — U .
B(a, )| /0|Vu| ds+§l:£ Zl/\u Ui ds

Q

Since o is complex and z; € Cforalll = 1,2, -+, L, and the fact that |a+ib| = Va2 + b2 >
Va? = |a| we have that

|B(a,a)| = /(Re(a) +iTm(e)) |Vul? dS

() am(2)) i

I/Re(o)|Vu|2 dSJrZRe( )/uUﬂ ds|.
Q

\%

Since we know that Re (%) = Bele) and using Re(o) > o > 0 and Re(z) > Z > 0 for

1]
alll =1,2,---, L we can remove the outer absolute value and reduce the equation further
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B(a,a)| > /Re(o)|vu|2 dS+§L:Re (le) /|u—Ul\2 as

=1 e

/Re( ) [Vaul? ds+ZRe /| _ U2 ds

Q

200/|Vu|2d5—|—mx| Z/\u U? ds

Q

Z
> min | 09, ——— /|Vu\2 dS+Z/|ufUl|2 ds
max |2| A e

=8|, U)))Z = 6 lall?

By choosing the constant § = min (00, malel) we get the desired result.

We have now checked |( @] (c)| for our B, so what is left is to check that the linear
functional, f : (v,V) — Zz 11V, on the right-hand side of is well defined and
continuous.

To show that f is well defined we check that two equivalent elements in H are mapped
into the same element. So assume that (v,V) ~ (7,V), so that V; = V; — const, [ =

, L. Then we have by

L L L . B
V)= LVi=> L(Vi—const) =Y LV, = f(5,V)
=1 =1 =1

This shows that f is well defined.
Since the domain of f is a normed space we show that it is bounded and conclude
that it is also continuous. Let ¢ € C be a constant such that

9 5 \1/2
(o =l + IV = €lZe) < @Vl +e,
which tells us especially that
IV =cllcz < [I(v, V)|l + e (2.32)

Using first Cauchy-Schwarz and then (2.32)) we get

f, V)] =

< Mller IV = cllee

< llee ([0, V)l +€),

which shows that f is bounded and hence continuous as € > 0 can be chosen . O
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Remark 1. We have now shown that there is a unique solution to the problem in H. But
this gives us infinitely many solutions in H, since H is an equivalence class of solutions.
In order to get a unique solution (u,U) in H we add the final constraint

L
Y ui=o. (2.33)
=1

To prove that this yields a unique solution in H we pick two arbitrary solutions (u,U), (1, f]) €

H to (2.6). We must have the relationship (4, U) = (u+k,U+k) for some k € C. Because
of the constraint (2.33)), we must have

L L
ui=0, Y. Ui=o.
=1 =1

Now summing the U’s yields

L L L
O:ZUZ :Z(UlJrk) :ZUer
=1 =1 =1 !

requiring k = 0, since we have L > 0. .
This proves that a unique solution to (2.6) in H also becomes a unique solution to the
same problem in the space H given the constraint (2.33)).

L

k= Lk,
1

2.3 Solving the CEM for a Simple Geometry

In this section, we will find a solution to a problem in a simple geometry using the CEM.
The domain chosen is the square 2 = [0, 1] x [0, 1] as seen from figure Note that
this domain is not C! in the corner points, but since the solution in those points are not
interesting, we have no problem. Two electrodes are attached to the domain: One on the
line z = 0, and one on the line z = 1. The conductivity is assumed constant and is set to
o = 1 and the impedance coeflicients are assumed to be the same z; = zo = 2. We choose
these conditions because it is possible to find an analytical solution for comparison, which
we have do in
The PDE formulation of this problem can be generated using (2.2))-(2.4)
Au=0 inQ (2.34)
subject to the boundary conditions on 0f2
u—zu.(0,y) =U

2.35
u+ zug(1l,y) = =U, (2.35)

and

1
—/mo,y) dy =1
0 (2.36)

1
/ux(l,y) dy = —1I.
0

The weak formulation of this problem is generated using (2.6]) and is
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/Vu-V@dx-i—

Q

— €1 0 €y —

(0,0) v

Figure 2.1: Sketch of the square domain with electrodes attached.

(u(0,y) =U)(v = Vi) dy

Q| =
O\H
|

IS

+ /(u(l,y)+U)(@—f/l) dy = Vil — Vol (2.37)

In Python this problem is easy to solve with the Finite Elmenent Method (FEM)
using the Fenics library [7]. In general when using FEniCS to find a weak solutions with
FEM, it is done by the following steps:

1.
2.

® N o o s W

Create and initialize parameters (U, I, z;, 0)

Create or load mesh

Define and initialize subdomains (for each electrode)

Create functionspaces

Create trial- and test functions (R and C'G1, which is piecewise affine elements)
Write up the weak formulation, which in FEniCS is called the variational form
Use solver

Split solution into relevant variables (v and U)

The code for this can be seen in and a plotted solution can be seen in Figure 2.2 If
we compare this to the analytical solution in Figure we see that the solutions are
identical.

16



1.00.0

Figure 2.2: Solution in square domain with 1=2
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Chapter 3

Linearization

3.1 The Current-to-Voltage Map

In this section we investigate the current-to-voltage operator
R, : CL L,

where

L
cgz{Xecﬂ lezo},

=1

that maps current vectors I € CL to voltage vectors U € CL. The reason for the
investigation of R, is that it both gives us useful information regarding the forward
problem and later will be important in order to solve the inverse problem. It has been
shown experimentally that the relation between I and U is linear [§]. This means that
R, can be represented as a matrix, which we denote R,. Since (Cg has the condition
that vectors sum to zero, it has dimension L — 1, so we can find a basis of L — 1 vectors.
Assume that {I’ }f;ll is an orthonormal basis. Then we can write

L-1
R, I=R,» (I,I)I.

j=1

Using this relation, we can find the i’th basis coefficient of R,I by

L-1 L—1
(R,II') = <R(, > <I,IJ'>IJ',P> =Y (I,)(R,I.I').
j=1 j=1

We notice that this is a vector product so that one representation of R, is the matrix R,
with elements

[Ra]i,j = <RonaIi>- (3.1)

It is noted that R,I7 corresponds to the voltage vector that results from the solution
to — with the current vector I7 and the conductivity o. Therefore there are two
options for finding R,. Either one can simulate voltage vectors as just explained or one
can use EIT to measure the voltages on the electrodes. In this way using the simulation
to generate R, corresponds to solving the forward problem.
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Remark 2. We remark that U and I have L elements, but the matriz R, has dimensions
(L —1) x (L —1). This means that if one wanted to calculate the output voltages given
a current vector, one would have to use a basis change matriz B = [I', I?, ..., I*~] with
the dimension L x (L — 1) yielding

U=BR,B'I

3.2 The Fréchet Derivative

In the inverse problem, we are interested in reconstructing a perturbation, h, from a
background conductivity, o, based on knowledge about R,;;. To do so, we have to
investigate the mapping h +— R, 4p. First, we need to define a new domain. We need this
domain since we will only consider perturbation that are zero close to the boundary.

Definition 4. For e > 0 we define the domain
Qe={z€Q|dz,00) <e}.

Using this domain we define

Q' =0\Q..
This is a compact domain and we define
L) = {f € L=(Q) | supp f C '}
We can now define the mapping
F: L®() = B(CL,CL) : h Ry, (3.2)
where B(CL,CL) is the Banach space of linear and continuous operators that maps from
CL into CL.
If we linearize in a neighbourhood of ¢ corresponding to linearizing around F(0), we
can predict what happens for a small perturbation h. To do this we will use the Fréchet
derivative defined in Appendix We let R, = F(0) denote the Fréchet derivative

with respect to h and R, [h] denote the Fréchet derivative in the "direction” h € L>=(§).
The Fréchet derivative is the mapping

R, . L>=(Q) — B(CL Ch).

To be the Fréchet derivative R, must be a bounded linear operator that satisfies
Rotn = Rs + R, [h] + o(h),

which is equivalent to

1

lim  —— |Rysn — Ry — R, [A]l,, =0, (3.3)
ey 0 Tl gy ’
where the operator norm is
|Rosn = Ro— Ry, = swp  [(Rosn— Ro—RLDID].  (34)
I,Jeck

Il =[1Jllce =1

Before we introduce the Fréchet derivative we state a lemma, which we will need in the
later proof.

19



Lemma 5. let {zl}lel be real-valued and let o € L>°(Q) be a real positive function, then
the matriz R, is real-valued and self-adjoint.

Proof. We start out by using that the adjoint operator of R, is (R,)* = R, in the sense
of complex conjugation of the matrix. This is shown in [§]. To show that (R,)* = R, we
need to show that R, = R, i.e. that R, is real-valued.

Let (w?,W7) be the soulution to (2.2)-(2.5) with current vector J. We now split the
PDE problem into a real and imaginary PDE problem. Since the operator Im : C — R
is linear, we get the following PDE for the imaginary part

V-oVIm(w?) =0 in Q, (3.5)
J
Im(w”) + Zla@lngi(yw) = Im(W;”) one, l=1,2,---,L, (3.6)
dlm(w’) L
JT =0 on aQ\lL:Jl €, (37)
J
/aahgi(yw) dS = Tm(J;) for {=1,2,-- L. (3.8)

€l

Assuming the current is real-valued, then the unique solution to (3.5)-(3.8) is (Im(w), Im(W)) =
(0,0), i.e. the voltage is also real-valued. This means that we can find a real-valued

orthonormal basis {I*}1=! for CX such that the matrix elements (R.I7, 1 1>fj_:11 are real-
valued since R, maps real-valued currents into real-valued voltages, R, : RZ — RL. As

such we conclude that (R,)* = R, i.e. R, is self-adjoint. O
This leads to the Fréchet derivative for our problem.

Theorem 6. Let the contact impedances be real-valued, i.e. z; € R, 1 =1,2,..,L, the
conductivity, o, be real, and let h € L>=(Y). Furthermore, let (wf,W?) and (w’, W)
be unique solutions to - with currents I and J respectively and conductivity o.
Then the Fréchet derivative of the mapping F in is

(R.[n])J,I) = — / hVw? - Vw! dz. (3.9)

Q
The proof of is done in three parts. First an expression for R, — R, is found by
use of the weak formulations. Next the PDE problem (2.2)-(2.5)) is extended to a more

general case. Finally, the extension will be applied to obtain a bound on R,y — Ry —
R/ [h], which is o(h).

Proof. Part 1 - Expression for ((R,4+n, — Ry)J,I)
To prove that (3.9)) is the Fréchet derivative we need to investigate
(Rosn — R — RL[M)JT) = ((Rotn — Ro)J X) — (R [M]J, T).

We start with the first inner product, ((Rytn — Ry)J, I).

Let (u!,UT) be the unique solution to (2.2)-(2.5) with current vector I and conduc-
tivity o + h. Let (w’,WY) be the unique solution to — with current vector
J and conductivity o. Then we know according to that the corresponding weak
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formulations for the two PDE problems are

_ Lq _
(I, V) :/(U—l—h)VuI-VU d:zc—f—Z—/(uI—UlI)(i—Vl) ds, V(v,V)e H, (3.10)
Q =1 “ ey

L
<J,v>:/an-de+zzl/(wJ—vvlJ)(a—Vl) s, V@, V)eH  (3.11)
1
Q =1 e

Using that (3.10]) and (3.11)) hold for all (v, V) € H, we can insert (v,V) = (w’, W)
in (3.10) and (v,V) = (u!,U”) in (3.11)). Furthermore, instead of inserting the voltages
WY and U directly, we use that WY = R,J and Ul = R, I. Doing so we get

_ L g S

k) = [0 nved v ae e 3L [ oGl - TR as
Q =1 A e

(3.12)

L
(J, Ry 1) = / oVw’ - Vul dr+) zl / (w? = [RoJN1)(ul — [Roipd],) dS.  (3.13)
1
Q =1 e

We know from Lemma [5| that R, is self-adjoint. Using this and inserting (3.10)) and
B11), we get

(Rosn — Ro)J I) = (Roind 1) — (Rod ) = (J, Roqn ) — (I, RoJ)

= - / hVw? - Vul dz. (3.14)
Q

Part 2 - Extension of (2.2)-(2.5)
We now look at a more general PDE problem than (2.2))-(2.5]). So let everything be as in

Proposition |1} Now we consider the PDE problem

V.-oVu=-V-hVyg in Q, (3.15)
u—i—zla%:Ul one, |=1,2,--- L, (3.16)
O%dS:Il forl=1,2,---,L, (3.17)
el
ou L
05, = 0 on 8Q\U e, (3.18)

=1

where g € H'(Q). Following a similar proof as in Proposition [I] we arrive at the weak
formulation

L
1 _
/avu-w dx+zz—l/(u—Ul)(17—V2) ds
Q =1 er
= (I,V)cr — (hVg, Vo), ¥(v,V) € H.

(3.19)
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Writing (3.19)) as an operator equation on the form

B((U,U), (U’V)) = f((U,V)),

we recognize B as the sesquilinear operator from Proposition |1} which we have shown is
bounded and coercive with the lower bound

‘B((uv U)7 (U,U))| 2> min | oo, ”(uvU)Hi ) (320)

max |z1]

if o satisfies the asumptions from Theorem [3| Looking at the right-hand side f((v,V))
we see that it is anti-linear - since V is linear and the inner product is anti-linear in
the second entrance - and well-defined for (v,V) € H. We know that the first part of
f is bounded from the proof of Theorem [3| and by using the triangle inequality and the
Cauchy-Schwarz inequality we see that

(@ V)] = {LV)es = (hV9,90) )| (3.21)
< ULV)eul + [(hV9,V0) 12| (3.22)
< Tllce 10, V) + 189 2y [V 2y - (3.23)

Now using the equivalence of the norms (2.13) and (2.14), that [Vl o) < 9]l 41 (a)
and that |AVgl|p2(q) < [1hll Lo ) [Vl p2(q) we arrive at

(@ V)] < s 1@V + 10l ) 1V 12 (3.24)
< C s 10, V)l + 1] e I sy [0l oy (3:25)
< (C s + 10l ey N9l ) 0, VL - (3.26)

Hence f is bounded and therefore continous, so by applying the Lax-Milgram theorem
we have that there exists a solution to the general PDE problem (3.15))-(3.18) and that
it is unique.

Part 3 - Using the extension on a special case
Now consider the inhomogenous PDE problem as defined in 3.18) with v = u! —w!
and V =UT — WY, Since we have V- ((o + h)Vul) =0 and V (an ) =0, v satisfies

V- (e+hVo=V-(c+hVu =V .oVuw! - V.V = -V .1Vl
h is assumed to vanish on the boundary. Thus, all the products with A in the boundary

conditions will vanish. Furthermore, we notice that we get a homogenous boundary
condition for the input current

dS / +h dS /a+h )dS—Il I, =0.
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Hence, (v, V) is the solution to the following PDE problem

V(6 +h)Vv=-V-hVuw! in Q, (3.27)

0
u—l—zlaa—szl one, [=1,2,--- L, (3.28)

v
/J?dSzO forl=1,2,---,L, (3.29)
el
w_y on aQ\U e (3.30)
061/ = 1. .

Thus, it is now clear that (3.27] - - is a special case of ((3.15| 1 3.18)) with the conversion
of symbols u:=v, U:=V, I:=0, 0 :=0c+h and g := ThlS means that the bound

(13.20) for the weak formulation holds given that o + h is approprlately bounded as in
Theorem [3| Since h € L>®(Q'), o + h is bounded from above. The lower bound can be
found by assuming ||A[| ;e o) < 00/2. This yields

IRe ()| < % = Re(h)> _% (3.31)
Combining ({3.31)) with the assumption Re () > ¢ from Theorem [3] yields
Re (o +h) =Re (o) + Re(h) > g9 — % = %7

Hence, we have the apropriate bounds for ¢ + h. Following the same procedure as in
Theorem [3] for the coercivity, we get

B((0,V), (v,V))] = min | 2, —Z

2’ max |21

I, V)1 = 61l V), (3.32)

where § is a constant independent of h. We now combine the lower bound (3.32]) and the
upper bound ([3.26). Since ||I||o. =0 as I =0, we get the inequality
2
3l VI < [B((0,V), (0, V) = [F (0, V)] < 7l e oy |07 |11 ) 105 V)L (3:33)
Reordering (3.33)), it follows that
1
||(U>V)H* < g HhHLOQ(Q/) ’wIHHI(Q) . (334)

Combining (3.9)) and (3.14)) we see that by (3.34]) we have

{(Rysn — Ry — RL[R)T,I)| = /thI Vodz
Q

IA

IHL2(Q) HVUHLQ(Q)

< ||hHL°C(Q’) |vaHL2(Q) H(U7V>||*

1
< vaIHLz(Q) g ||hH2L°°(Q’)

’wIHHl(Q)

If we now go back to (3.3]), with the operator norm (3.4]), we have that

1
lim —— |[|[Ry4n — Ry — R, [1]||,, = 0.
h=0 [All gy v
This proves that is the Fréchet derivative. O
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Remark 3. Note that Theorem [f only applies to small perturbation, which are 0 near
the boundary. This means that this need to be checked before applying the theorem.

3.3 Calculating the Fréchet Derivative

In this section we wish to investigate the Fréchet derivative. We know that given h €
L>(Q), R/ [h] maps a current vector into a voltage vector. As we saw for R, in Section
we can represent R/ [h] as a matrix R, h with elements

Rb], ;= (R,[HE, T') / W' - Vo da,

where {I J } ! is an orthonormal basis for CX and w? is the first entry of the solution to

. with current vector I°.

To calculate the elements of the matrix representation of R/ [h], we make a pixel-
discretization of our domain, {2, by triangulation, where each triangle is a pixel. We
make N pixels and denote them p,, K =1,2,--- , N. Now using the basis functions

¢)k($,y) — {1 7(‘%3—/) ?pk,

0 ,otherwise,

we can write
(R, T') = Z/mhvuﬂ Vu'dz = — Z/thJ V' dz.

We now make the approximation that h is constant on each pixel (the more pixels the
better the approximation), with value hy on py, so that

<R’ I] Il>~ Z/thwJ Vuwide = — th/ij Vwidz.

k=1
We see that this can be written as the vector product
p'h,
where p = (— [ Vw/ - Vwidr,— [ Vw’ - Vwidz, - ,— [  Vw! - Vw' dz) and h =
pP1 p2 PN
(h1,h2,- -+ ,hy). This means that we can calculate R, h by calculating the matrix-vector
product
iy
1/, Vw! - Vw! dz e —Jon Vw! - Vwldz ] h.Q
= [, Vw? - Vuwldz ; .
(L—1)? — I, VwE= . Vwl dz ;
— [ Vw!' Vw?dz
p1
— [ VoD . volE-Ddzr . — [ Vol Vel-1dz ;
L p1 PN J .
L/ ]
(3.35)
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and then unstacking the resulting vector of length (L —1)? into a (L —1) x (L — 1) matrix.
The matrix in is denoted R, and is of great interest to us as we can analyze it
to determine some of the depth dependencies in CEM. We will come back to this in the
next chapters.

Since we often use many pixels and integrating takes time, we make yet another
approximation, namely

— [ V! -Vwidz =~ — |pg| V! (my) - Vwi(my), (3.36)

Pk

where |py| is the area of pixel k and my, is the midpoint. Here we make the approximation
that also w*, ¢ = 1,2,---, L—1, is constant on each pixel. When we use the approximation
(3-36]) in calculation of the Fréchet derivative we will use the notation R/ [h] When

point*
we do not use the approximation we will use the notation R/ [h]

int*
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Chapter 4

Singular Value Decomposition
and Reconstruction

This chapter is meant as a short introduction to Singular Value Decomposition (SVD)
and the use of it to reconstruct small perturbations from the conductivity. As inspiration
we have used [9].

4.1 Singular Value Decomposition
SVD primarily concerns the equation

Ax=D (4.1)

)

where A € R"*™ x € R™, and b € R™. If A is square and has full rank, it is invertible,
and is easy to solve for x. On the other hand, if A is not invertible, tools like SVD
are used.

SVD is a method of factorization of a matrix A into a product of matrices USV " with
the goal of finding an approximate solution x' to The dimensions of the matrices are

-
Amxn = UmeSanVan~

The eigenvectors of AA T are called the left singular vectors and makes up the columns
u; of U. The eigenvectors of AT A are called the right singular vectors and makes up
the columns v; of V. U and V are orthogonal matrices, which means that the respective
inverse matrices are U and V. As such the columns of U and V form an orthonormal
basis for R™ and R"™ respectively. S is a diagonal matrix that consists of the square root
of the eigenvalues of both AAT and AT A, which are called the singular values s;. The
values are sorted such that s; > s > --- > Smin(m,n)- 1N order to solve for x, we
introduce the pseudoinverse, Af, of A. If A is invertible the pseudoinverse is just the
inverse of A. The pseudoinverse is defined mathematically as

At =VvSsiUuT,

where SLXm is a diagonal matrix with the values 1/s; for all non-zero s; and zeros
for s; = 0. Let n be the index of the smallest non-zero singular value s,, then the

reconstruction x! of x will be

", (b,u;)
T— Afp = E (b, u; - 4.2
. b =1 Si v ( )
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It is seen from equation that the singular values close to zero give a large contri-
bution to the reconstruction. Therefore, when reconstructing perturbations with noise,
it can some times be advantageous not to use the smallest singular values in the recon-
struction and instead only use the largest k singular values, since the noise coefficients
(b, u;) are amplified for small singular values s;. We indicate the use of this k-truncation
by using AL instead of AT, so that

t t " (b,u;)
x, =A,b= Z 5 Vie (4.3)
i=1 v

We will not go into details of how to choose this k in an effective way, but only mention
that there exist heuristic methods for this. For more information see [5].

4.2 Reconstruction of a Perturbation Function A

Assume that we want to search for a small perturbation h in the conductivity . We
could for instance be interested in looking for cracks in a block of concrete to make sure
that the concrete is stable. We would have knowledge about the "normal” conductivity
for concrete, and from that we could find R, and R/ by simulation. R,;n would be
calculated from the measured data from EIT. In the end with the help of truncated SVD,
we could reconstruct the perturbation and find the cracks. This section is about how to
do that in practice.
The equation we would like to solve for h is

R(/Th = (Ro+h - Ra)a (44)

where h is a stacked vector of length N equal to the number of pixels in the mesh with
the value of the unknown perturbation on each pixel. Furthermore, (R,4+n — Ry) is
stacked as a (L — 1)? vector instead of a matrix. The solution to is found using the
pseudoinverse of R/, that is R, = VSTUT. This means that h is found using and

is on the form
n

ht = Z ((Ro+n — Ro), ui>vi’ (4.5)

Si

i=1
with n being the number of the smallest singular value different from zero. As mentioned
in the Section [£.T]a k-truncation could be necessary if there is noise on the measurements.
Instead of using an advanced method for finding the k for the k-truncation in our SVD,
we calculate the L?-norm on the difference between the reconstructed and the analytical
solution, |hT — h“z’ every time we have added one singular value and choose the k that

gives the smallest L?-norm. In this way we choose the reconstruction that are closest to
the analytical solution.

4.2.1 Adding Noise

When we have data from actual measurements it will contain some noise, i.e. the right

side in becomes 4 _

bl’lOlSe — ( g(_);;e _ P{'U)7
This means that in the reconstruction formula the noise will also be reconstructed
and especially for smaller singular values the noise will interfere a lot.

In practice the noise will appear on the measured voltages. So before we calculate
R, 1 by (3.1) we add noise to R, pI7, j =1,2,--- ,L — 1. So we have

Rg‘+th + n.
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In this project we have chosen to work with normal distributed noise with mean 0 and a
standard deviation depending on the data. We calculate n by

nc Ny (0,5d%), sd=e¢ max max [RU_HLIj]i ,

j=1,2,--+ ,L—14=1,2,--- ,L

where [Rg+th ]Z is the i’th element of the j’th voltage vector. We call € the noise level.
To determine the noise level we calculate b and b™=¢ for different noise levels and look
at the relative error

_ anoise _ bH2 B ||( gi_i;e — Ro—) - (R(;Jrh - RG’)H2

noise __ — (46)
Iblly [(Ro+n — Ro)ll

We aim to use a relative error close to 1%.
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Chapter 5

Numerical Analysis of the
CEM

5.1 Setup for Numerical Analysis

In general all numerical calculations in this chapter are made using the programming
language Python [I0]. We use FEniCS [7] as a library in order to use FEM to solve
the forward problem. The unit disk is chosen as our domain, 2. The boundary of the
circle is approximated by a 300th polygon and the coarseness of the mesh is calculated
to N = 9920 pixels. The contact-impedances are set to z; = 0.1, « = 1,2,..., L and
the conductivity is chosen to ¢ = 1. In order to calculate for instance R,, we need an
orthonormal basis {I k}éz_ll for CL. This orthonormal basis is calculated by the Gram-
Schmidt process with the starting vector (1,—1,0,0,---,0). In addition to this setup,
we operate with 3 different electrode configurations all with uniform spacing. The full
electrode configuration is L = 20 electrodes attached to the whole boundary, see Figure
The half electrode configuration is still L = 20 electrodes, but instead spread over
only the top of the boundary, see Figure [5.1b The quarter electrode configuration is
L = 10 electrodes spread over the top right corner of the boundary, see Figure If
nothing else is stated we use perturbations, h, with amplitude 0.3.

5.2 Test of the Fréchet Derivative

In order to test the Fréchet derivative, we do two numerical experiments. First we check
if R. satisfies (3.3). We let the test situation be as in and use the full electrode
configuration. We make a convergence test with a specific type of function h; € L™= ()

i 2ty < (3)°
. — J >3
hi(z, y) { 0 ,otherwise, (5-1)
for 1 < % This type of function takes the value ¢ inside a circle with radius r = %
and 0 elsewhere. By calculating [|Rotn, — Ro — Ry hil|,, and ||| o) = @ for chosen

i-values, a convergence plot is created.
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(a) The full electrode configuration. (b) The half electrode configuration.

(¢) The quarter electrode configuration.

Figure 5.1: The 3 different electrode configurations we use in the project. The blue color is
where the electrodes are places.
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and not [[A;|| ;o is that we use i-values which spand from ¢ = 0.001 to ¢ = 0.5. This
means that is satisfied for this numerical example. We calulate the operator norm
as the largest eigenvalue of the matrix.

The second numerical experiment is to observe the matrices R/ [h] and (Ry4n — Ry)
and the absolute difference between these.

Rrr+h_‘Rrr R,a[h'];mm
9.00e-03
6.00e-03 6.00e-03
3.00e-03 3.00e-03
0.00e+00 0.00e+00
-3.00e-03 -3.00e-03
6.00e-03 -6.00e-03
-9.00e-03 -9.00e-03
1.206-02 -1.20e-02
-1.50e-02
-1.50e-02
|RO' +FL_R.-J'_R,.-J-['&] poa'ﬂf| |R,o-[h']pm'm_R,rr[h'] mf|
2.00e-03 1.05e-05
1.75e-03 9.00e-06
1.50e-03 7.50e-06
1.25e-03 6.00e-06
Lo

3.00e-06
1.50e-06

5.00e-04
2.50e-04

Figure 5.3: Plots to test the linearization. In these plots we have used a mesh with N = 3694
pizels. Top left: the actual difference Ro4n — Ro. Top right: the linear approrimation using
(13.36). Bottom left: the absolute difference to the linear approximation. Bottom right: the
absolute difference when using the approximation compared to not using it.

We observe in Figure [5.3] that the error we make using the linearization is roughly
a tenth of the largest value in the matrices. This is close to zero but still a large error
compared to the values in the matrix. We see that the tendencies in the matrices are the
same but that the values are a little off. In the bottom right we see that the error we
make using the approximation is quite small, and will be smaller as we usually use
N = 9920 pixels. Here we note that calculating the Fréchet derivative with the integrals
takes hours with our code, while it takes minutes with the approximation.

5.3 Singular Vectors and Depth Dependency

As we have seen in the singular values and vectors play a big role in reconstruction.
We know that V is a orthogonal N x N matrix and therefore that its columns form a
basis for the "pixel-space”. Therefore we wish to investigate the right singular vectors.
Specifically we are interested in the size of the corresponding singular value for each vector
since this will tell us in which areas of the domain a perturbation is harder to reconstruct.
A perturbation in areas with contribution of vectors with larger singular values is easier
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to reconstruct since noise will not have that much of an effect. Likewise a perturbation
in areas with contribution of vectors with small singular values is hard to reconstruct.

We have plotted the singular values of the setup described in Section with the
different electrode configuration on a logarithmic scale in Figure We notice that for
the full and half configurations, roughly there is an exponential decrease in the values
until the 190th singular value, where the values go to machine precision which we interpret
as 0. We see the same decrease for the quarter configuration but until the 45th singular
value. This means that in reconstruction we use n = 190 values at most.

\ (i=190)

(i=190)

logy(o;)

~— —

H .

-20 -20,
=50 0 50 100 150 200 250 300 350 400 —~50 0 50 100 150 200 250 300 350 400

(a) Full. L = 20. (b) Half. L = 20.

0

5 —
~ [i=45]
)

.._\‘___—-.

0 20 40 60 80
i

(¢) Quarter. L = 10.

Figure 5.4: Singular values for the three electrode configurations. We have marked the point
where the singular values goes to machine precision (equivalent to 0).

In Figure we have plotted the singular vectors for some singular values. We see in
Figures and that the vectors for larger singular values are located very close to
the boundary. In Figures and we see that the vectors for the smaller singular
values are well spread over the domain. In Figures and [5.51] we see that the vectors
for the even smaller values are primarily located close to the middle of the domain. For
singular values equal to 0 we have spikes around the domain, which seem arbitrary as
seen in Figures and

To sum up the previous paragraph we see a pattern where the vectors move towards the
middle, and thereby further away from the electrodes, when the singular values decrease.
This shows that there is a depth dependency in the CEM, i.e. it is easier to reconstruct
perturbations close to the electrodes.
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Singular value: 6.821e-02
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(a) 2nd singular vector.
Singular value: 3.133e-04

(¢) 85th singular vector.
Singular value: 9.477e-09

0.5
0.005
00 -0.005
-0.5

(e) 175th singular vector.
Singular value: 1.057e-17

(g) 220th singular vector.

Singular value: 5.538e-02

(b) 10th singular vector.
Singular value: 7.146e-05

(d) 100th singular vector.

Singular value: 2.094e-09

(f) 182nd singular vector

Singular value: 5.835e-18

(h) 260th singular vector.

Figure 5.5: Plots of some chosen singular vectors. In the first row we have large singular values
and in the third row we have small values while the second row has values somewhere in between.
In the fourth row we see the vectors for singular values that are 0.
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If we look at the singular vectors for the half and quarter configurations in Figures
[5.6] and [5.7] respectively, we see the same tendencies as for the full configuration. That is,
the larger the singular values the closer the contribution moves towards the electrodes.
Furthermore, we notice that there are no contributions in the bottom half for the half
configuration and no contributions outside of the top right quarter for the quarter con-
figuration. This means that reconstruction of perturbation in these areas is not possible
with these configurations. For more singular vectors for the half and quarter electrode
configurations see Appendix [C.1]

Singular value: 4.342e-02 Singular value: 3.705e-05 Singular value: 3.322e-09

0,089
0,079

0.068

0.058

0,047 05
0.037

0.026

0.016

0.005

0.005

0.016

0.026

0.037

0.058
0.068
0.079

0.089

(a) 28th singular vector. (b) 109th singular vector. (c) 171st singular vector.

Figure 5.6: Plots of some chosen singular vectors for the half electrode configuration.

Singular value: 1.067e-01 Singular value: 8.673e-04 Singular value: 5.316e-07
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(a) 2nd singular vector. (b) 31st singular vector. (¢) 45th singular vector.

Figure 5.7: Plots of some chosen singular vectors for the quarter electrode configuration.

5.4 Depth Dependency in Reconstruction

We want to test the depth dependency of the reconstruction for the 3 different electrode
configurations. The way we approach this is to create a symmetric object with its center
coordinates (zg, yo) moved towards the electrodes. Appropriate step intervals are chosen,
the reconstructions are plotted and the relative error ||h — hT||2 / |Ih||, between the an-
alytical solution, h, and the reconstructed solution, h' is calculated in every step. The
code can be found in Appendix [D.3]

34



Analytical for y0=0.0 Analytical for y0=0.2 Analytical for y0=0.4

05 0232 05
(a) y0=0. (b) y0=0.20. (¢) y0=0.40.

Figure 5.8: The analytical circle function for given yo and xo = 0.

Antal basisvektorer: 190 for y0=0.0 Antal basisvektorer: 190 for y0=0.2 Antal basisvektorer: 190 for y0=0.4
0358 0358 0358
0316 0316 0316
0274 0273 0274
o5 0232 s 0232 0s 0232
0189 0189 0189
0147 0147 0.147
0105 0105 0105
0063 0063 0.063
0021 0021 0021
oo 0.021 o0 0.021 0o -0.021
e -0.063 0.063 -0.063
0105 0105 0,205
0147 0147 0247
0189 0189 0189
-0 0.232 -0 -0.232 -0 0232
0278 027 0273
0316 0316 0316
0358 0358 0358
05 00 05 05 0 05 05 00 05
(a) y0=0. (b) y0=0.20. (c) y0=0.40.

Figure 5.9: The reconstructed circle function with the full electrode configuration for given yo
and o = 0.

Number of singular vectors: 190 for y0=0.0 Number of singular vectors: 190 for y0=0.2

Number of singular vectors: 190 for y0=0.4

(a) y0=0. (b) y0=0.20. (c) y0=0.40.

Figure 5.10: The reconstructed circle function with the half electrode configuration for given yo
and xg = 0.
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Error Plot of h=0.3 _circle Error Plot of h=0.3 _circle
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(a) relative error as a function of yo. (b) relative error as a function of yo.
Tested on the circle function with the full Tested on the circle function with the half
electrode configuration. electrode configuration.

Figure 5.11: Relative errors for moved objects.

We do a test that compares the reconstruction of the circle function with the full
and the half electrode configurations. It is observed that the reconstruction is quite
good in all the steps in the full configuration, whereas for the half configuration the
reconstruction gets better the closer the perturbation is on the electrodes. This is also
confirmed quantitatively with the two plots of the relative error, since Figure [C.7a] shows
no clear tendencies in the relative error as we get closer to the boundary and Figure [C.7h]
shows that the relative error decreases.

For the quarter electrode configuration we investigate the depth dependency in the
same way, but with a square function. These plots, see Figure show the importance
of the perturbation being really close to the boundary if one would like to find it using
the quarter electrode configuration. The visual observations are supported by Figure
where the relative error decreases drastically from nearly 100% to around 40% when
we get closer to the boundary. For more examples on reconstructions with the half and
quarter electrode configurations, see Appendix

Analytical for y0=0.2 Analytical for y0=0.4 Analytical for y0=0.55

o0s

00 00

(a) z0=y0=0.20. (b) 20=y0=0.40. (¢) 20=y0=0.55.

Figure 5.12: The analytical square function for given (xo,yo).
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Number of singular vectors: 45 for y0=0.2 Number of singular vectors: 45 for y0=0.4 Number of singular vectors: 45 for y0=0.55

(a) z0=y0=0.20. (b) 20=y0=0.40. (¢) 20=y0=0.55.

Figure 5.13: The reconstructed square function with the quarter electrode configuration for given
(5507 yo).

Error Plot of h=0.3_square
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Figure 5.14: relative error as a function of yo. Tested on the square function with the quarter
electrode configuration.

5.5 Testing Reconstructions with Noise

In this section we will test reconstructions with different levels of noise as well as looking
at the linearization error. The relative error for noise will be calculated as in (4.6) and
the error of linearization by

fin _ [Pin = blly _ [[RGh = (Ron — Ro)l,
bl [(Rotn — Ro)ll,

In Figure [5.15] we have plotted a reconstruction with the full electrode configuration
of the analytical function seen in [5.15a] for different noise levels, e. We see in Figure [5.15b]
that the best reconstruction without noise is with 99 singular vectors, but still the shapes
are not reconstructed well. When we add some noise with noise level € = 10~* we get the
best reconstruction, seen in Figure with 89 singular vectors. With a noise level of
€ = 1073 we get the reconstruction in Figure with 75 singular vectors. We see the
tendency that the more noise the smaller truncation level, k. Another thing we notice
is that the noise does not really affect the reconstruction much at the shown noise levels
compared to the error of the linearization, which we have calculated to be 16.78% for this
perturbation with the full electrode configuration.
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Analytical

Number of singular vectors: 99
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0274

05 0.232
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00 -0.021
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-0.105

-0.147

(a) Analytical perturbation.
Number of singular vectors: 89

(b) Reconstruction without noise.

Number of singular vectors: 75

(¢) Reconstruction with noise level € = (d) Reconstruction with noise level ¢ =

1074, em°B¢ = 0.66%. 1073, e™°®¢ = 6.96%.

Figure 5.15: Reconstructions with different noise levels for the full electrode configuration.

If we instead use the half electrode configuration for reconstruction of two circles we
get the plots in Figure One circle is close to the center of the disc, and the other
is close to the boundary, where the electrodes are placed. We see in Figure that
without noise both circles get reconstructed apart from each other. When we add a little
noise in Figure we see that in the reconstruction the circles are no longer separate
and only the circle close to the boundary is about the right amplitude. If we add even
more noise in Figure the circle close to the center is not in the reconstruction.
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Analytical Number of singular vectors: 167
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(a) Analytical function. (b) Reconstruction without noise.

Number of singular vectors: 97 Number of singular vectors: 82

(¢) Reconstruction with noise level € = (d) Reconstruction with noise level ¢ =
107°. €™ = 0.26%. 1074, €™ = 2.63%.

Figure 5.16: Reconstructions with different noise levels for the half electrode configuration.
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Chapter 6

Conclusion

in Chapter [2] we have shown that there exists a unique solution to the PDE problem
that governs EIT using CEM. The fact that unique solutions exist, makes it possible to
solve the forward problem as explained in Section We have introduced the Fréchet
derivative and proved that we can find it for an appropriate mapping in Section [3:2]
and used it to linearize the inverse problem. We have tested that the linearization is
reasonable in Section We have introduced SVD in Section [£.1] and used it to analyze
an appropriate matrix representation of the Fréchet derivative in Section with the
purpose of reconstructing objects.

In order to investigate depth dependency in EIT with the CEM, we have tested the
unit disc in three ways. The results are described in Section [5.3 and show that noise on
the data will make reconstruction of objects further away from the electrodes harder to
reconstruct.

Furthermore, in Section we have tested the depth dependency of reconstructions
of small perturbations, where we moved the objects closer to the electrodes. The result
was that the reconstruction improved significantly when the object moved closer to the
electrodes. In this way we can conclude that the distance between the perturbations and
the electrodes has great impact on the reconstruction.

Finally, In Section [5.5] we have tested how noise on data affects the reconstruction of
objects in practise. We have seen that the linearization of the inverse problem affects the
reconstruction more than the noise for small levels of noise and we have found that noise
affects objects further away from the electrodes more.

This all builds to the conclusion that the distance to the electrodes has a great influence
in reconstruction and that there is a depth depencency in EIT with the CEM.

6.1 Future Work

In our project we have chosen both to go into details with the theory behind the recon-
struction of perturbations and to investigate the depth dependency for specific choices
of domain and electrode configuration. To get an even more comprehensive picture of
depth dependency in EIT with CEM, one could do further testing with different domains,
different electrode configurations, and also change the dimension from 2D to 3D.
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Appendix A

Definitions, Theorems and
Lemmas

Definitions and theorems are inspired by [I] and [3].

Theorem A.1 (Lax-Milgram). Let X be a Hilbert space. Let B be a complez-valued
functional defined on the product space X x X satisfying the following conditions:

(a) sesquilinearity:
B(Oél(ll + aoasg, b) = ole(al, b) + OéQB(aQ, b),
B(a, f1b1 + B2ba) = B1B(a,by) + B2B(a, b);

(b) boundedness: Iy > 0:|B(a,b)| < vla| |0];
(¢) coercivity: 36 > 0 : |B(a,a)| > 6 |a||’.

Then, for any continuous linear functional f : X — C, there is a unique b € X such that
f(a) = B(a,b), VaeX.

Theorem A.2 (Trace Theorem). Assume Q is bounded and 9} is C. Then there exists
a bounded linear operator
T:WhP(Q) — LP(09)

such that -
Tu=ulpq if ueW'P(Q)NC(Q) (i)
and
HTu”Lp(aQ) <cC ||“HW1,p(Q) ) (i)

for each u € WYP(Q), with the constant C depending on p and 0 only.

A.1 Sobolev Imbeddings for Bounded Domains
Definition A.3 (Sobolev Spaces). Fiz p € [1,00[ and let k € N. Then we define
whe(@),

as the functionspace consisting of local summable functions, i.e. functions u € L'(Q)
where u : Q — R and D*u exists in the weak sense and belongs to LP () for all o that
satisfy o] < k.
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Definition A.4 (Continuous and Compact Imbeddings). Given normed spaces (X, |-||x)
and (Y, ||-|ly) such that X CY, define the inclusion operator v : X =Y byix =2, x €
X.

(i) A continuous imbedding, written X — Y, is when ¢ is continuous or equivalently
(as ¢ is linear) bounded

3C > 0Vz € X : |z|ly, < Clz| -

(ii) A compact imbedding, written X CC Y, is when X <Y and ¢ is compact. Le. for
every bounded sequence (x,) C X with sup,, ||,||y < 0o, there exists a subsequence
(n,,) C (x) which is Cauchy in (Y, |-|ly).

Lemma A.5. Let Q be an open bounded domain, then WP (Q2) — W™1(Q) form € Ny
and 1 < qg<p<oo.

Theorem A.6 (Sobolev Imbedding). Let Q be an open bounded domain in R? with C*
boundary. Furthermore, let 1 < p < oo, k € N and m € Ny, then the following continuous
imbeddings apply.

(i) If k< & then
WmHEP(Q) — W™(Q), 1< g <dp/(d— kp).

(i) If k> 2 orif k=d and p =1 then

hSHISH

WmHEP(Q) s W™1(Q), 1< ¢ < oo.
(iii) If k = 9 then
WmHRP(Q) s W™9(Q), 1< q < oo.

Theorem A.7 (Rellich-Kondrachov). Let Q be an open bounded domain in R? with C*
boundary. Furthermore, let 1 < p < 0o, k € N and m € Ny, then the following compact
imbeddings apply.

(i) If k < 4 then
wmrkr(Q) cc W™9(Q), 1< q<dp/(d— kp).

(i) If k > £ then

hSRISH

wmrkr(Q) cc W™4(Q), 1< ¢ < 0.

Remark 4. Note that LP(Q) = WOP(Q), and H*(Q) = W*2(Q).

A.2 The Fréchet Derivative

This section is inspired by [4].

The Fréchet derivative of an operator can be compared to the derivative of a function
in the sense that it describes what happens when we take a point and move a little away
from it. Before defining the Fréchet derivative we need to introduce some notation.

Definition A.8. Suppose f: X — M is defined on a neighbourhood of 0 € X C N. We
say f(h) = o(h) (read ’f(h) is little oh of h’) if || f(R)||/ |P|| = O as h — 0.
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The letter o stands for order of magnitude, and f = o(h) means that f is of a smaller
order of magnitude than h. This leads to the main definition of this section.

Definition A.9. A continuous linear operator L : N — M is said to be the Fréchet
derivative of f : X C N = M at the point x € X if

fx+h)=f(x)+Lh+o(h) as h—D0,

where N and M are normed spaces.

43



Appendix B

Analytical Solution to CEM

The problem is the same as in Chapter We will solve the problem analytically using
seperation of variables. Assume therefore that

u(z,y) = X(2)Y(y). (B.1)
We have then, that

Vim0 & X'V4+v'x—o0 o -~ Y, (B.2)
- - X Y '

Since XTN is independent of y and Y7” is independent of x, they are both constant. Let
the constant be denoted by A, then we have

X// Y//
= - =\ B.3
X Y ? ( )
For X we get the equation
X" - X\=0. (B.4)

For A = 0 we get the linear solutions Xo(z) = Co+Chz. For A # 0 we get the solutions
Xn(z) = Cl,neﬁx + Cgﬁne_‘aac (B.5)
For Y we get the equation

Y/ 4+YA=0, (B.6)

which for A = 0, too, gives us linear solutions Yy(y) = Ko + Kyy. Imposing the
boundary condition Y’(0) = 0 show that K; = 0 so that we have the constant solution
Yo(y) = Ko. For A # 0 the solutions become

Y, (y) = Ay cos(VAy) + By sin(vAy) (B.7)

Now we want to impose the boundary conditions on Y. We have

Y/ (y) = —ApVAsin(vVAy) + B,V cos(Vy) (B.8)
Using Y/(0) = 0 yields B,, =0, since A # 0. Using Y'(1) = 0 we get

Y!(1) = —A,VAsin(VA) = 0,
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resulting in A = n?72, n € N. The solution u(z,y) will then be

u(z,y) = Xo(2)Yo(y) + Y Xn(@)Va(y)
= Do + Dll‘

+ Z(An cos(nmy))(Cy ne"™ + Co e "™%)

n=1

We calculate u,(x,y) as

00
u;c(x7 y) = Dl + Z An COS(nTl'y)(C’Lnnﬂ-enﬂ'm _ OQvnnﬂ_efnfrz).
n=1

1
Using the boundary conditions — [ u,(0,y) = I we get the coefficients
0

D1:—I, A,LZO,TLEN.

To get the remaining coefficients we sum the boundary conditions yielding

u(0,y) — 2ux(0,y) + (u(l,y) + 2ux(1,y)) =U -U =0 &
D072D1+(D0+D1+2D1):O =

py= 2L

2 2

The final solution is therefore

u(z,y) = é — Ix. (B.9)

Notice that the solution is independent of y and z.
In Figure we see a plot of the solution for I = 2.
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Figure B.1: Plot of solution in squaredomain with =2
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Appendix C

Plots

C.1 Singular Vectors
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(a) 5th singular vector
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Singular value: 4.342e-02
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(b) 28th singular vector
Singular value: 3.705e-05

(¢) 98th singular vector
Singular value: 3.322e-09

(e) 171st singular vector 48

(d) 109th singular vector
Singular value: 2.350e-10

(f) 188nd singular vector

Figure C.1: Plots of some chosen singular vectors for the half electrode configuration.
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Figure C.2: Plots of some chosen singular vectors for the quarter electrode configuration.
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C.2 Reconstructions

Analytical for y0=0.0 Analytical for y0=0.25 Analytical for y0=0.5
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Figure C.3: The analytical hole function for given yo and zo = 0
Number of singular vectors: 190 for y0=0.0 Number of singular vectors: 190 for y0=0.25 Number of singular vectors: 190 for y0=0.5
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Figure C.4: The reconstructed hole function with the half electrode configuration for given yo
and xo =0

Analytical for y0=0.15 Analytical for y0=0.35

Analytical for y0=0.55

(a) x0=y0=0.15 (b) 20=y0=0.35 (¢) 20=y0=0.55

Figure C.5: The analytical circle function for given (zo,yo)
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Number of singular vectors: 45 for y0=0.15 Number of singular vectors: 45 for y0=0.35 Number of singular vectors: 45 for y0=0.55

05 ) o5

(a) z0=y0=0.15 (b) 20=y0=0.35 (¢) 20=y0=0.55

Figure C.6: The reconstructed circle function with the quarter electrode configuration for given
(-TO: yo)
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Figure C.7: Relative errors for objects moved from the middle and towards the electrodes
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Appendix D

Code

In this appendix we list the purpose of important functions and scripts used in the project
along with the code.

D.1 CEMLibrary_full

This library consists of important functions and is imported in every script file. The
prenotation ”full” indicates the type of the electrode configuration. We have also two
libraries "half” and "quarter”, but as these are the same except for lines 34-35 where the
length of the electrodens and the space between them are defined, we will not mention
them.

D.1.1 solver(sigma,L,I,Z,mesh)

Takes in a FEniCS expression sigma, a number of electrode L, a current vector I of length
L, a contact impedance vector Z of length L, and a mesh. It returns the solution (u,U).

D.1.2 cont_plot(x,y,z) and cont_plot2(x,y,z)

Both of these function takes in 3 vectors x,y,z of length N and returns a figure with the
corresponding contour plot with appropriate colorbars.

D.1.3 load_frechet()

Loads the matrix representation of the Fréchet derivative equivalent to the electrode
configuration.

D.1.4 grid(x, y, z, resX=100, resY=100)

used by cont_plot for plotting.

D.1.5 gramSchmidt(L)

Takes in a number of electrodes L and returns L — 1 othornormal basis vectors found by
Gram Schmidt Orthonormalization with the starting vector (—1,1,,0---,0) of length L.
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1

D.1.6 create R _sigma(sigma,L,Z,mesh)

Takes in a FEniCS expression sigma, a number of electrode L, a contact impedance vector
Z of length L, and a mesh. It return the matrix R,.

D.1.7 Frechet(sigma,L,Z,mesh)

Takes in a FEniCS expression sigma, a number of electrode L, a contact impedance vector
Z of length L, and a mesh. It returns the matrix representation of the Fréchet derivative
R/ without the approximation (3.36]).

D.1.8 Frechet_point(sigma,L,Z,mesh)
The same as Frechet(sigma,L,Z,mesh), but with the approximation ([3.36]).

D.1.9 OperatorNorm(A)

Calculates the operator norm of A by returning the largest eigenvalue.

D.1.10 CEMLibrary_full.py

# —x— coding: utf—8 —x—

993 9

Created on Thu Apr 30 06:53:28 2015

@author: ecO0di

93 9

import numpy as np

from numpy import linalg as LA

from dolfin import x*

from mshr import =

import matplotlib.cm as cm

import matplotlib.pyplot as plt

from mpl_-toolkits.axes_gridl import make_axes_locatable
from mpl_-toolkits.mplot3d import Axes3D

from matplotlib.colors import LogNorm

from matplotlib.ticker import MultipleLocator
import scipy.sparse as sps

from matplotlib.mlab import griddata

import matplotlib as mpl

#from h_functions import x*

path = 'Full/’

def solver (sigma ,L,I,Z,mesh):
# def 2 pi function
def twopiarctan(x):
val=np.arctan2 (x[1],x[0])
if val <O0:
val=val+42x*pi
return val

# Define length of each electrode (uniform length is assumed)
e_l=pi/L
d_e=2x%pi/L—e_l

class theta_values(Expression):

def eval(self ,theta ,x):
theta[0]=np.arctan2(x[1],x[0])
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11 # Define subdomain mesh
42 subdomains = FacetFunction(”size_t”, mesh)
a3 subdomains. set_all (0)

15 # Define subdomains

16 class e(SubDomain) :

a7 def inside(self, x, on_boundary):

18 theta=twopiarctan (x)

49 return on_boundary and theta>=thetal and theta<=theta2

1 R = FunctionSpace (mesh, "R” ,0)
52 Hl = FunctionSpace (mesh,”CG” ,1)
3
1

spacelist = []

56 for i in range(1l, L+1):
57 thetal = (i—1)*(e-l4+d-e)

58 theta2 = thetal+e_l

59 el = e() # create instance
60 el .mark (subdomains , i) # mark subdomain
61 spacelist .append (R)

62

63 spacelist .append (H1)

64 spacelist .append (R)

65 # Create funciton space

66 V = MixedFunctionSpace(spacelist)

67

68 # Define new measures associated with the boundaries
69 dS = Measure(’ds’, domain=mesh) [subdomains ]

1 # Define trial and testfunctions
72 u = TrialFunction (V)
73 v = TestFunction (V)

75 # Pre—define f

76 f = 0+%dS(1)

78 B = sigmaxinner (nabla_grad (u[L]), nabla_grad(v[L]))=*dx

79 for i in range(L):

80 B += 1/Z[i]*(u[L]—u[i]) *(v[L]—v][i])*dS(i+1)

81 B += (v[L+1]*u[i]/assemble(1xdS(0)))=*dS(0)

82 B += (u[L+1]*v[i]/assemble(1xdS(0)))=*dS(0)

83 f 4+= (I[i]xv[i]/assemble(1xdS(0)))=dS(0)

84

85 # Compute solution

86 q = Function (V)

87 solve (B = f, q)

88

89 Q = q.split (deepcopy=True)

90

91 # Split solution

92 U =[]

93 for i in range(L+1):

94 U.append (Q[i])

95

96 #u = Q[L]

97 return U;

98

9o def cont_plot(x,y,z): # Makes contour plot from (x,y,z) and returnes
figure

100 # define the colormap

101 cmap = plt.cm.get_cmap( 'RAYIGn’)

102 # extract all colors from the .jet map

103 cmaplist = [cmap(j) for j in range(cmap.N)]

104 # create the new map
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105 cmap = cmap. from _list (’Custom cmap’, cmaplist, cmap.N)

107 # define the bins and normalize

108 bounds = np.linspace(—0.1,0.1,20)

109 norm = mpl. colors.BoundaryNorm (bounds, cmap.N)
110 cmap.set_over (’green’)

111 cmap.set_under ( 'red’)

112 fig , ax = plt.subplots(1,1)

113 ax.set_axis_bgcolor (’grey’)

114 # create grid

115 Xx, Yy, Zz = grid(x, y, z)

116 # make the scatter

117 ax.contourf(Xx, Yy, Zz, cmap=cmap, norm=norm)
118

119 divider = make_axes_locatable (ax)

120 # create a second axes for the colorbar

121 cax = divider.append_axes(”right”, size="10%", pad=0.05)

122 mpl. colorbar. ColorbarBase (cax, cmap=cmap, norm=norm,

123 spacing=’proportional ’,

124 ticks=bounds, boundaries=[—10]+bounds

+[10],
125 extend=’"both’
126 format="%.3f")
127 return fig
128
120 def cont_plot2(x,y,z): # Makes contour plot from (x,y,z) and returnes
figure
130 # define the colormap
131 cmap = plt.cm.get_cmap ( 'RAYIGn’)
132 # extract all colors from the .jet map
133 cmaplist = [cmap(j) for j in range(cmap.N)]
134 # create the new map
135 cmap = cmap. from_list (’Custom cmap’, cmaplist, cmap.N)
136
137 # define the bins and normalize
138 bounds = np.linspace (—0.4,0.4,50)
139 tickmarks = np.linspace(—0.4,0.4,20)
140 norm = mpl. colors.BoundaryNorm (bounds, cmap.N)
141 cmap.set_over (’green’)
142 cmap.set_under ('red’)
143 fig , ax = plt.subplots(1,1)
144 ax.set_axis_bgcolor (’grey’)
145 # create grid
146 Xx, Yy, Zz = grid(x, y, 2)
147 # make the scatter
148 ax.contourf(Xx, Yy, Zz, cmap=cmap, norm=norm)
149
150 divider = make_axes_locatable (ax)

51 # create a second axes for the colorbar

2 cax = divider.append_axes(”right”, size="10%", pad=0.05)

3 mpl. colorbar . ColorbarBase (cax, cmap=cmap, norm=norm,

4 spacing=’proportional ’,

5 ticks=tickmarks, boundaries=[—10]+bounds
+[10],

156 extend="both ’ |

157 format="%.3f")

158 return fig

160 def load_frechet ():

161 print ”Loading frechet derivative...”
162 M = np.loadtxt (’ Matrices/Frechet_point_sigma=1_full.txt’)
163 print ”Loaded”

164 return M
165

166 def grid(x, y, z, resX=100, resY=100):
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167 ?Convert 3 column data to matplotlib grid”

168 xi = np.linspace (min(x), max(x), resX)
169 yi = np.linspace (min(y), max(y), resY)
170 Z = griddata(x, y, z, xi, yi, ’linear’)
171 X, Y = np.meshgrid (xi, yi)

172 return X, Y, Z

. def gramSchmidt (L) :

75 def proj(u,v): # Pojection of v on u for Gram—Schmidt
176 return np.inner (u,v)/np.inner (u,u)*u
177

178

179

180 V = np.zeros ((L, L-1))

181 U = np.zeros ((L, L-1))

182

183 Vi0,:] =1

184 for i in range(L—1):

185 V[i+1,i] = -1

186

187 U[:,0] =V][:,0]

188 # Orthogonalize

189 for i in range(1,L—1):

190 projSum = 0.

191 for j in range(0,i):

192 projSum += proj(U[:,j],V[:,1])
193 Ul:,i] = V][:,i] — projSum

194

195 # Normalize

196 for i in range(L—1):

197 Ul:,i] = U[:,i]/np.sqrt(np.inner (U[:,i],U[:,1]))
98

199 return U

200

01 def create_R_sigma (sigma ,L,Z,mesh):
02 # create basis vectors
03 Imat=gramSchmidt (L)

05 U = np.zeros ((L, L-1))

07 for i in range(L—1):

08 u=solver (sigma,L,Imat[:,i],Z, mesh)
09 for j in range(L):

UL, i] = ulj]

2 R_sigma = np.zeros ((L—1, L-1))

1

13

14 for i in range(L—1):

15 for j in range(L—1):

16 R_sigma[i,j] = np.dot(U[:,j],Imat[:,1i])
1

18 return R_sigma

o # Frechet derivative matrix for a given conductivity
1 def Frechet (sigma ,L,Z,mesh):

2 # number of pixels

3 N = mesh. num_entities (2)

1 # create basis vectors

5 Imat=gramSchmidt (L)

7 g-w=(]

8 for i in range(L—1):

9 u=solver (sigma,L,Imat[:,i],Z, mesh)
0 g-w.append (grad (u[L]))
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32 face_domains = FaceFunction(’size_t ’ ,mesh)

34 faces = [ Face(mesh, i)
5 for i in range(N) ]

37 for face in faces:
238 face_domains [face] = face.index ()

240 dsf = Measure(’dx’, domain=mesh) [face_domains]

2 M = np.zeros (((L-1)*(L-1),N))

3 # create matrix of functions [i,]]

4 for k in range(N):

5 vals = np.zeros ((L—1, L-1))

6 for i in range(L—1):

247 for j in range(L—1):

8 vals[i,j] = —assemble(inner (g-w[i],g-w[j])x*dsf(k))
49 vals = np.reshape(vals ,((L—1)*(L-1)))

250 M[: ,k] = vals

return M

5 N = mesh.num _entities (2)

6 print ?Calculation frechet derivative with "+str (N)+” pixels”
57 Imat=gramSchmidt (L)

58 V_g=VectorFunctionSpace (mesh, 'CG’ ,1)

60 g-w=[]

261 for i in range(L—1):

2 u=solver (sigma,L,Imat[:,i],Z, mesh)
263 grad_w=project (nabla_grad (u[L]) ,V_g)
i g-w.append (grad_w)

266 M = np.zeros (((L-1)%(L-1) ,N))

67 # create matrix of functions [i,]]
268 for k in range(N):

69 if (np.mod(k,N/99)==0):

270 print str ((k+0.0)/Nx100)+"%”
71 vals = np.zeros ((L—1, L-1))

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

25

254 def Frechet_point (sigma,L,Z,mesh):
2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2 for i in range(L—1):
2
2
2

73 for j in range(L—1):

74 point=MeshEntity (mesh,2 ,k) . midpoint ()

75 vals[i,j] = —g-w[i](point).dot(g-w[j](point))*Face(mesh,k).
area ()

76 vals = np.reshape(vals,((L—-1)%(L-1)))

77 M[: ,k] = vals

78 print ”Done with Frechet_point”

79 return M

1 def OperatorNorm (A):
82 b=np.dot(A,np.transpose (A))

83 e,v=np.linalg.eig(b)
84 return sqrt (max(e))

D.2 h_functions

This script contains analytical expressions for small perturbations.
h_functions.py

1 # —*— coding: utf—8 —x—

9993 9
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Created on Thu Jun 4 07:42:00 2015

@author: ecO0di

93 9

from numpy import x*

# circle with radius 1/3
def h_circle(x,y):
r1=1.0%1/3
if (x#k24ysx2<=r1*%2):
return 0.3
else:
return 0

# circle , square and triangle
def h_geometry (x,y):

r1=0.5

r2=0.25

x0=r1/sqrt (2)

#cirkel top left corner

if ((x—(—x0))**%2+4 (y—x0)**%2<=r2%%2) :

return 0.3
#square top right corner

if (x>=x0-r2 and x<=x0+r2 and y>=x0-r2 and y<=x0+4r2):

return 0.3
#triangle bot middle

if (y>=—(r14r2) and y<=x—r2 and y<==x-r2):

return 0.3
else:
return 0

# doughnut
def h_hole(x,y):
r1=1.0%1/3
r2=1.0%2/3
if (x#k24y*x2<=r1*%2):
return 0
if (x#k24y*x2<=12 *%2) :
return 0.3
else:
return 0

# square
def h_square(x,y):
r1=0.3
#Square in the middle

if (x>=r1/2 and x<=rl1/2 and y>=rl1/2 and y<=rl/2):

return 0.3
else:
return 0

# banana shape
def h_banan(x,y):
r1=0.3

if (y<==x**2+rl1/2 and y>=—0.7%x*%2 and x>=-rl and x<=rl):

return 0.3
else:
return 0

2> # two half circles with diffent

def h_halfcircles(x,y):
x1=-0.3
x2=0.3
if (x<0 and y<=0):
return h_circle (x—=x1,y)

sign
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63 if (x>=0 and y>=0):

69 return —h_circle (x—x2,y)
70 else:

71 return 0

D.3 reconstruct_moved object

Code for reconstructing perturbations for different center values (xg,yo). They are com-
pared to the analytical functions by calculating the relative norm between them.

reconstruct_moved_object.py

1 # —x— coding: utf-—-8 —x—

9993 9

3 Created on Tue Jun 9 06:19:28 2015
1

@author: ecO0di

33 9

s from CEMLibrary_half import x*
o from h_functions import x

12 # Nr of electrodes

15 if (path="Quarter/’):
16 L =10

17 else:

18 L = 20

20 # generate orthonomal basis

Imat=gramSchmidt (L)

23 # Define vector of contact impedances
20z = 0.1

25 Z = |[]

26 for 1 in range(L):

2 Z.append (z)

# Define domain (Circle)

R=1 # radius of circle

n 300 # number of polygons to approximate circle
32 F = 50 # fineness of mesh

m

N

1%

esh = generate_mesh (Circle (Point(0,0) ,R,n) ,F) # generates mesh
= mesh.num_entities (2)
rint N

37 # Define conductivity
35 class sigma_fun (Expression):
39 def eval(self ,values , x):
10 values [0] =1

12 # Define h

13 # h is defined from file h_functions
1o def h_fun(x,y):

15 return h_circle (x—x0,y—y0)

17 # Define sigma+h

45 class sigma_h_fun(Expression):

19 def eval(self ,values , x):

50 values [0] = sigma (x)+h_fun (x[0],x[1])
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80
81
82
83
84

85

# Define string names for later print
hstr = "h=0.3 _circle”

s # Define HI room

Hl=FunctionSpace (mesh, ’CG’ ;1)

# Initiate functions
sigma = sigma_fun (element=H1. ufl_element ())

print ”Creating R_sigma”

R_sigma = create_R_sigma (sigma ,L,Z, mesh)
if (L==10):

M = load_frechet_L10 ()
else:

M = load-frechet ()

# Create svd
print ”Doing SVD...”
U, s, V=LA.svd(M)

# Saving midpoints for later
print ”Saving midpoints...”

i x = [ MeshEntity (mesh,2,i).midpoint () .x(

)

for i in range(N) ]

y = [ MeshEntity (mesh,2,i).midpoint().y()
for i in range(N)

# Getting ready to loop over different h functions

y0_max=0.60

y0_step=0.05

y0_vec=np.arange (0, yO_max+yO_step, yO_step)

print yO_vec

k_vec=np.zeros (len (y0O_-vec))

error_vec=np.zeros (len (y0O_vec))

for k in range(len(yO-vec)):

# Define new y—value for midpoint of inner cirkel
yO0=yO_vec [k]
# Defining x0 to the right configuration
if (L==10):
x0=y0
else:
x0=0
sigma_h = sigma_h_fun (element=H1.ufl_element ())

print 7Creating R-_sigma_h for the: "+str(k)+”th time”
R_sigma_-h = create_R_sigma (sigma_h ,L,Z,mesh)

b=np.reshape (R_sigma_h—R_sigma , ((L—1)*(L—1)))

99

# Create noise
alpha = 0.01
sd = alphaxnp.max(np.abs(b))

print ”Make some noise!!!”
noise = np.random.normal (0, sd, len(b))

b=b+noise

99

# Create analytical stacked solution
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h_anal = np.zeros ((N))

for i in range(N):

midPoint=MeshEntity (mesh,2,i).midpoint ()
h_anal[i]=h_fun (midPoint.x () ,midPoint.y())

h_rec = 0%xV[0,:]
idx_min_error=0
min_error=1000000

for i in range(len(s)):

h_rec=h_rec+np.dot(b,U[:,i])/s[i]*V][i,:]

if (LA.norm(h_rec—h_anal)<=min_error):
min_error=LA.norm(h_rec—h_anal)

idx_min_error=i—+1

print 7idx_min_error is: "4str(idx_-min_error)

# Calculate relative error

rel_error = min_error/LA.norm(h_anal)

error_vec [k]=rel_error

# Generating reconstructed best

h_rec = 0%xV[0,:]
for i in range(idx_min_error):

solution

h_rec=h_rect+np.dot (b,U[:,i])/s[i]*V][i,:]

# Plotting
fig=cont_-plot2(x,y,h_rec)

fig .suptitle (’Number of singular vectors:
="4+str (y0-vec[k]), fontsize=20)

‘+str (idx-min_error)+” for y0

folder = path+”’L="+str (L)+”/Reconstruct/Moved_Object/ +hstr+"/”

yO0_string = 7%.2f” %y0_vec [k]

name = ”y0="+4+y0_string+” _Reconstructed.png”

# save image

print ”Saving image as: ”+4name
fig.savefig(folder+name)
plt.close(fig)

# Analytical
fig=cont_plot2(x,y,h_anal)

fig.suptitle (’Analytical for y0=’+str(yO_-vec[k]), fontsize=20)

name = "y0="+yO_string+” _Analytical.png”

# save image

print ”Saving image as: ”+4name
fig.savefig(folder+name)
plt.close(fig)

print error_vec

# Safe error_vec
name="error_vec-"+hstr

np.savetxt (folder4+name, error_vec)
# Plotting

plt.plot (y0O_vec,error_vec)
plt.title ("Error Plot of ”+hstr)
if (L==10):

plt . xlabel (’center value of x0=y0’)

else:
plt.xlabel(’center value y0’)

plt.ylabel(’relative error’)

5 name="error_plot_"+hstr+”.png”

plt.savefig (folder+name)
plt .show ()
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D.4 R_sigma

Code for testing the Fréchet derivative. Both the linearization error and the convergence
plot are made in here.

R _sigma.py

# —*x— coding: utf—8 —x—

93 9

1
3 Created on Fri Mar 27 11:12:40 2015
1

@author: anders
6
7 code for creating R_sigma in circle domain
8 299
9
10
11 from CEMLibrary_full import x*
12 from h_functions import x*
13 # Define number of electrodes
1w L = 20

16 # Define input currents
17 #1 = [—-2,5,—3]

1o Imat=gramSchmidt (L)
20 #print Imat

2

23 # Define vector of contact impedances
20z = 0.1

25 Z = |[]

26 for 1 in range(L):

27 Z.append (z)

2

9 # Define domain (Circle)

50 R=1 # radius of circle

31 n = 300 # number of polygons to approximate circle

32 F = 30 # fineness of mesh

33 mesh = generate_mesh(Circle (Point(0,0) ,R,n),F) # generates mesh
34 N = mesh.num_entities (2)

35 print N

36 HlI=FunctionSpace (mesh, ’CG’ ,1)
3s #plot (mesh)

10 # Define conductivity in domain
11 class sigma_fun (Expression):

12 def eval(self ,values ,x):

13 values [0] =1

44

45 sigmastr = ”sigma=1”

16 # make instance of sigma

47 sigma = sigma_fun (element=HI1. ufl_element ())

149 # create R_sigma
50 R_sigma = create_R_sigma (sigma ,L,Z,mesh)

> count=0
53 # values of h function
54+ hs = [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5]

55 norms = []

57 M = load_frechet ()

62



63

66
67
68
69

70

90

count=0

for

h_inside in hs:
count=count+1
# Define h
def h_fun(x,y):
r1=1.0%1/3
if (xxx24y*sk2<=rl*%2):
return h_inside
else:
return 0

hstr = "h="+4str (h_-inside)+” _inside”
class sigma_h_fun (Expression):
def eval(self ,values , x):
values [0] = sigma (x)+h_fun(x[0],x[1])

sigma_h = sigma_h_fun (element=H1.ufl_element ())

print ”Creating R_sigma_h for the "+str(count)+”th time”
R_sigma_h = create_R_sigma (sigma_h ,L,Z, mesh)

diff matrix = R_sigma_h—R_sigma

# calculate analytical function

h = np.zeros ((N))

for i in range(N):
midPoint=MeshEntity (mesh,2,i).midpoint ()
h[i]=h_fun (midPoint.x () ,midPoint.y())

Mh = M. dot (h)
Rm_sigma_h = np.reshape (Mh,(L-1,L—-1))

# matrices to be plotted

Ml = diff_matrix

M2 = Rm_sigma_h

M3 = np.abs(diff_matrix —Rm_sigma_h)

99 9999

# plot matrices

name = ”"Matrices/Comparing_with_difference/’+typ+”’-M1—"+sigmastr+”_"+
hstr+”_L="+str (L)+”_-N="+str (N)+”_F="+str (F)+”_-n="+str (n)+”.txt”

# Dump matrix to file

print ”Saving Ml as: ”+name

np.savetxt (name, MI)

name = ”"Matrices/Comparing_with_difference/’+typ+”-M2—"+sigmastr+"_"+
hstr+”_L="4str (L)4+7_N="+str (N)+7_F="+str (F)+’_n="+str (n)+7. txt”

# Dump matrix to file

print ”Saving M2 as: ”+name

np.savetxt (name, M2)

name = ”"Matrices/Comparing_with_difference/”+typ+7-M3—"+sigmastr+"_"+
hstr+”_L="+str (L)+"-N="+str (N)+”_F="+str (F)+”_-n="+str (n)+”".txt”

# Dump matrix to file

print ”Saving M3 as: ”+name

np.savetxt (name, M3)
79"

print ”plotting ...”

fig, (axl, ax2, ax3) = plt.subplots(1,3)
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fig.suptitle (’Comparing with linearization (’+str(typ)+’)’, fontsize
=20)

axl.set_title ("$R_{\sigma+h}—R_{\sigma}$’)

# Display image, ‘aspect=’auto’‘ makes it fill the whole ‘axes‘ (ax3)
iml = axl.matshow (M1, interpolation=’nearest’, vmin=Ml.min (), vmax=MI.
max (), cmap="jet )

# Create divider for existing axes instance

dividerl = make_axes_locatable (axl)

# Append axes to the right of ax3, with 20% width of ax3

caxl = dividerl.append_axes(”right”, size="20%", pad=0.05)

# Create colorbar in the appended axes

# Tick locations can be set with the kwarg ‘ticks *

# and the format of the ticklabels with kwarg ‘format ¢

cbarl = plt.colorbar (iml, cax=caxl, format="%.2e”)

# hide axes

axl.xaxis.set_visible (False)

axl.yaxis.set_visible (False)

ax2.set_title (’SR\’_{\sigma }[h]$ ")

im2 = ax2.matshow (M2, interpolation="nearest’, vmin=M2.min (), vmax=M2.
max (), cmap=’jet )

divider2 = make_axes_locatable (ax2)

cax2 = divider2.append_axes(”right”, size="20%", pad=0.05)

cbar2 = plt.colorbar (im2, cax=cax2, format="%.2e”)

ax2.xaxis.set_visible (False)
ax2.yaxis.set_visible (False)

ax3.set_title (’Abs. difference’)

im3 = ax3.matshow (M3, interpolation=’nearest’, vmin=M3.min (), vmax=M3.
max (), cmap=’jet )

divider3 = make_axes_locatable (ax3)

cax3 = divider3.append_axes(’right”, size="20%", pad=0.05)

cbar3 = plt.colorbar (im3, cax=cax3, format="%.2e”)

ax3.xaxis.set_visible (False)
ax3.yaxis.set_visible (False)

plt.tight_layout ()
# Make space for title
plt .subplots_adjust (top=1)

name = ”"Matrices/Comparing_with_difference/”+typ+”_img—"+sigmastr+” _"+
hstr+” _L="+4str (L)+” _N="+str (N)+” _F="+4str (F)+” -n="+str (n)+”.png”

# save image

print ”Saving image as: ”+4name

fig.savefig (name)

plt.close (fig)

# calculate norm

x = OperatorNorm (M3) /h_inside

norms . append (x)

print str (1.0%count/len (hs)*100)+"%"

print hs
print norms

hs=np. array (hs)

# plot convergence

plt.
plt.

plt.
plt.
plt.

plot (np.log(1/hs) ,norms)

ylabel (r’$\frac{1}{\Vert h \Vert_{L"{\infty}}} \Vert R_{\sigma+h} —R_{\
sigma} —R_{\sigma} " {,}[h] \Vert_{op}$’,fontsize=15)

xlabel (r’$\log{\frac{1}{\Vert h \Vert_{L"{\infty}}}}$ ,fontsize=15)
title (’Convergence Plot’)

savefig (’Figures/convergencePlot_'+str (typ)+’ -full .png’)
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179 #plt . show ()

D.5 squaredomainCEM

Code for solving the setup in Figure [2.1]

squaredomainCEM.py

1 # —*— coding: utf—8 —x—

93 9

3 Created on Mon Mar 9 05:17:48 2015

5 @Qauthor: ecOdi

339

s import numpy as np
o from dolfin import =
10 from mshr import x*

12 2=0.1;

13 1=[2,-2]

14 x0=0; y0=0; x1=1; yl1=1
15 L=2

16 mesh=RectangleMesh (x0,y0,x1,y1,10,10)
17 class sigma_fun (Expression):

18 def eval(self,values ,x):

19 values [0]=1

sigma = sigma_fun ()

1

3 class Left (SubDomain) :

i def inside(self, x, on_-boundary):
5 return near(x[0], 0.0)

7 class Right (SubDomain) :

8 def inside(self, x, on_boundary):
9 return near (x[0], 1.0)

1 # Initialize sub—domain instances
left = Left ()
right = Right ()

# Initialize mesh function for boundary domains
36 boundaries = FacetFunction(”size_t”, mesh)

37 boundaries.set_all (0)

35 left .mark(boundaries, 1)

30 right .mark(boundaries, 2)

10 #top .mark (boundaries , 2)

11 #bottom . mark (boundaries , 4)

13 dS = Measure(’'ds’, domain=mesh) [boundaries ]
15 # Define function space and basis functions
126 R = FunctionSpace (mesh, ”R” ,0)

7 Hl = FunctionSpace (mesh,”CG” ;1)

45 mixedspaces=[R,R,H1,R]

50 V

MixedFunctionSpace (mixedspaces)

5> u = TrialFunction (V)
53 v.= TestFunction (V)

1
55 # Pre—define f
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B = sigmaxinner (nabla_grad (u[L]), nabla_grad(v[L]))=*dx

for i in range(L):

B 4+= 1/Zx(u[L]—u[i])*(v[L]=v[i])=*dS(i+1)

B += (v[L+1]*u[i]/assemble(1xdS(i+1)))*dS(i+1)
B += (u[L+1]xv[i]/assemble(1xdS(i+1)))*dS(i+1)

f += (I[i]*v[i]/assemble(1xdS(i+1)))*dS(i+1)

# Solution found and shown
q = Function (V)
solve(B = f, q)

Q = q.split (deepcopy=True)
# Split solution

U= 1]

for i in range(2):

U.append (Q[i])

u = Q[2]

for i in range(2):

print (?U’+str (i+1)+”: "+str (U[i].compute_vertex_values () [0]))

plot (u)
interactive ()

D.6 SVD

Code for making SVD of the Fréchet derivative and plotting the singular values and

vectors.

SVD.py

# —*x— coding: utf—8 —x—

939

Created on Tue May 12 15:02:02 2015

@Qauthor: anders

993 9

from CEMLibrary_full import =
L =20

# create basis vectors
Imat=gramSchmidt (L)

3 # create vector of contact impedances

z = 0.1

z =1

for i in range(L):
Z.append (z)

Define domain (Circle)
= 1 # radius of circle

= 300 # number of polygons to approximate circle

esh = generate_mesh (Circle (Point(0,0) ,R,n) ,F)

= mesh.num_entities (2)

#
R
n
F = 50 # fineness of mesh
m
N
print N

Hl=FunctionSpace (mesh, ’CG’ ,1)

66
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# Define conductivity in domain
class sigma_fun (Expression):
def eval(self ,values , x):
values [0] = 1
sigma = sigma_fun ()

5 M = load_frechet ()

print ”Doing SVD...”
U, s, V=LA.svd(M)
print ”Done”
print ”plotting singular values...”
fig = plt.figure()
fig.suptitle(’Singular values’, fontsize=20)
plt.xlabel (’$i$ ")
plt . ylabel ("log$_{10}$($\sigma_i$) )
x = np.arange(1l,s.size+1,1)
y = np.logl0(s)
x_-lab = 0
while (y[x_lab]>—14):
x-lab = x_lab+1
x_lab = x_lab -1
plt.scatter(x,y)
lab = x_-lab+1
plt .annotate (
i =%’ % lab,
xy = (x-lab+1,y[x_lab]), xytext = (60, 10),

textcoords = ’'offset points’, ha = ’'right’, va = ’bottom’,

)

bbox = dict (boxstyle = ’round,pad=0.5", fc = ’yellow’, alpha

)

))

# Define saving folder

folder = path+”L="+str (L)+”/Basisvectors/”

# save image

name = ”Singular_values”

print ”Saving image in: ?+folder+” as “4name
fig.savefig (folder4+name+”.png”)

np.savetxt (folderd+namet+” . txt”,s)

arrowprops = dict (arrowstyle = '—>’, connectionstyle = ’arc3 ,rad=0’

# save midpoints

x = [ MeshEntity (mesh,2,i).midpoint () .x
for i in range(

[ MeshEntity (mesh,2,i).midpoint() .y
for i in range(

(
N
y (
N

)
) ]
)
) ]

5 # number of images to be saved

n_images = str(len(s))
for i in range(len(s)):

fig = cont_plot(x,y,V[i,:])

fig.suptitle(’Singular vector: ’+str(i+1), fontsize=20)
name = ”"v_"+4str (i+1)+”.png”

# save image

print ”Saving image "+str(i+1)+” of "+n_images+” in:
”+name

fig.savefig(folder+name)

plt.close(fig)

D.7 SVD_reconstruct_h

Code for reconstructing a perturbation.

67
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SVD reconstruct_h.py

# —*— coding: utf-—-8 —x—

9993 9

Created on Wed May 13 08:18:47 2015

@author :

993 9

ec0di

from CEMLibrary import =*
from h_functions import x
# Nr of electrodes

L =20

# generate
Imat=gramSchmidt (L)

orthonomal basis

# Define vector of contact impedances

# generates mesh

z = 0.1
Z =]
for i in range(L):
Z.append (z)
# Define domain (Circle)
R=1 # radius of circle
n = 300 # number of polygons to approximate circle
F = 50 # fineness of mesh
mesh = generate_mesh (Circle (Point (0,0) ,R,n) ,F)
N = mesh. num_entities (2)
print N

# Define conductivity
class sigma_fun(Expression):
def eval(self ,values , x):

values [0] =1

# Define h
# h is defined from file h_functions
def h_fun(x,y):

return h_hole(x,y)

# Define sigma-+h
class sigma_h_fun (Expression):

def eval(self ,values , x):
values [0] = sigma(x)+h_fun (x[0],x[1])
# Define string names for later print
sigmastr = ”"sigma=1"
hstr = "h=0.3_hole_cond”
typ = "point”

50 # Define H1 room
Hl=FunctionSpace (mesh, ’CG’ ;1)

51
=0
52
53
54
55

56

5

58
59
60
61

62

# Initiate functions
sigma = sigma_fun (element=H1. ufl_element ())

sigma_h = sigma_h_fun (element=H1. ufl_element ())

7 # Create matrices

R_sigma = create_R_sigma (sigma ,L,Z, mesh)

R_sigma_h

Y=np.reshape (R_sigma_h—R_sigma , ((L—1)*(L-1)))

create_R_sigma (sigma_h ,L,Z, mesh)

63 # Create Frechet derivate in matrix form (L-1)"2 X N

68



6« M = Frechet_point (sigma ,L,Z,mesh)
65

66 # Create svd

67 print ”Doing SVD...?”

s U, s, V=LA.svd (M)

70 # Define midpoint coordinates for cells
71 print ”Saving midpoints...”

2 X [ MeshEntity (mesh,2,i).midpoint () .x
3 for i in range(
74y = [ MeshEntity (mesh,2,i).midpoint () .y
75 for i in range(
¢ h = 0%V[0,:]

7 counter_5=1
7s for 1 in range(len(s)—5): # minus 5 since the last values in s are so small

)

79 # so h=h+... takes infi long time.

80 h=h+4np.dot (Y,U[:,i])/s[i]*V][i,:]

81

82 if (counter_5==0):

83 #plotting

84 condNr=s [0] /s [i]

85 fig = plt.figure ()

86 fig.suptitle (’Antal basisvektorer: ’+str(i+1)+”, Cond: "+str (condNr
)7

87 fontsize
=20)

88 Xx, Yy, Zz = grid(x, y, h)

89 plt.contourf(Xx, Yy, Zz)

90 plt.colorbar ()

91 name = ”Matrices/h_reconstruct/’+hstr+”/h_"+str (i+1)+”_L="+str (L)+”

N="+str (N)+” _F="+str (F)+" -n="+str (n)+"v_"+str (i+1)+"_"+typ+’ "+
sigmastr+” _"+hstr+”.png”
92 # save image

93 print ”Saving image as: ”4name
94 fig.savefig (name)

95 plt.close(fig)

96 # Update counter

97 counter_S5=counter_5+1

98 counter_5=np.mod(counter_5,5)

D.8 SVD _reconstruct_h _noise

Script for reconstructing a perturbation with added noise on the data and also the ana-
lytical perturbation.

SVD reconstruct_h_noise.py

1 # —*%— coding: utf—8 —x—

93 9

Created on Wed May 13 08:18:47 2015

5 @Qauthor: ecOdi

99 9

s from CEMLibrary_quarter import x
o from h_functions import x

10 # Nr of electrodes

1 L = 20

13 # generate orthonomal basis
14 Imat=gramSchmidt (L)
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# Define vector of contact impedances
z = 0.1
)
for i in range(L):
Z.append (z)

# Define domain (Circle)

R=1 # radius of circle

n = 300 # number of polygons to approximate circle

F = 50 # fineness of mesh

mesh = generate_mesh (Circle (Point (0,0) ,R,n) ,F) # generates mesh
N = mesh.num_entities (2)

print N

# Define conductivity
class sigma_fun (Expression):
def eval(self ,values , x):

values [0] = 1

# Define h

6 # h is defined from file h_functions

def h_fun(x,y):
return h_geometry (x,y)

# Define sigma+h
class sigma_h_fun(Expression):
def eval(self ,values ,x):
values [0] = sigma(x)+h_fun(x[0],x[1])

# Define string names for later print
sigmastr = "sigma=1"
hstr = "h=0.3_geometry”

# Define H1 room
Hl=FunctionSpace (mesh, ’CG’ 1)

# Initiate functions
sigma = sigma_fun (element=H1. ufl_element ())
sigma_h = sigma_h_fun (element=H1. ufl_element ())

# Create matrices

print ”Creating R_sigma”

R_sigma = create_R_sigma (sigma ,L,Z, mesh)
print ”Creating R_sigma_h”

R_sigma_h = create_R_sigma (sigma_h ,L,Z,mesh)

Y=np.reshape (R_sigma_h—R_sigma , ((L—1)*(L—-1)))
print Y

55 # Create noise

alpha = 0.01
sd = alpha*np.max(np.abs(Y))
print sd

print ”Make some noise!!!”

noise = np.random.normal (0, sd, len(Y))
print noise
print Y

print ”Find relative error..”

Yn = Y + noise
rel_error = LA.norm(Y—Yn) /LA.norm (Y)
print rel_error

9 # Create Frechet derivate in matrix form (L—-1)"2 X N

M = load_frechet ()
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2 # Create svd

print ”Doing SVD...”
U, s, V=TLA.svd(M)

s # Define midpoint coordinates for cells

2

print ”Saving midpoints ...

x = [ MeshEntity (mesh,2,i).midpoint () .x()
for i in range(N)

y = [ MeshEntity (mesh,2,i).midpoint () .y()
for i in range(N)

h = 0+V[0,:]

counter_5=1

h_anal = np.zeros ((N))

for i in range(N):

]
J

midPoint=MeshEntity (mesh,2,i).midpoint ()
h_anal [i]=h_-fun (midPoint.x () ,midPoint.y())

folder = path+”L="+str (L)+”/Reconstruct/Noise/”+hstr+7/”

h = 0xV[0,:]
idx_min_error=0
min_error=1000000
for i in range(len(s)):
h=h+np.dot (Y,U[:,i])/s[i]*V][i,:]
if (LA.norm(h—h_anal)<=min_error):
min_error=LA.norm(h—h_anal)
idx_min_error=i+1

print 7idx_-min_error is: 7+str(idx_-min_error)

# Generating reconstructed best solution

h = 0%V [0 ,:]

for i in range(idx_-min_error):
h=h+4np.dot (Y,U[:,i])/s[i]*V][i,:]

fig=cont_-plot2(x,y,h)
fig.suptitle (’Number of singular vectors:

=20)
name = "Reconstructed_no_noise.png”
# save image
print ”Saving image as: ”4name

fig.savefig (folder4name)
plt.close (fig)

fig=cont_-plot2(x,y,h_anal)
fig.suptitle(’Analytical’, fontsize=20)

name = ”Analytical.png”
# save image
print ”Saving image as: "+name

fig.savefig (folder4name)
plt.close(fig)
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