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Simulating Perceptual Tasks With Deep Neural
Networks to Improve Diagnostics of Hearing

Impairment
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Abstract—Measuring pure-tone thresholds is the gold standard clinical tool for assessing the health of the auditory system. However,
several studies on both animals and humans show impairment and hearing deficits that are not reflected by the absolute threshold,
leading to the term ”hidden hearing loss (HHL)”. HHL has been shown in humans using electrophysiological measurements; however,
these come at a high expense and are not applicable for clinical use. The need for a behavioural test is therefore of high interest. Such
tests have been suggested based on a heuristic approach. However, this method might lead to a non-optimal trial-and-error strategy.
Using a state-of-art model of the auditory nerve (AN) paired with a deep neural network (DNN) model, we investigate gap detection as
a method for detecting cochlear synaptopathy (CS). Furthermore, we propose this approach as a general framework for investigating
behavioural tests before conducting expensive and time consuming human experiments. We trained the DNN model on natural speech
data and simulated a broadband-noise (BBN) gap detection task. The trained model was sensitive to CS and hearing threshold shift
induced by inner hair cell (IHC) dysfunction. In contrast, the DNN model achieved lower gap detection thresholds (GDTs) with induced
outer hair cell (OHC) dysfunction. Our results suggests gap detection as a behavioural test sensitive to CS and potentially also to IHC
dysfunction.

✦

1 INTRODUCTION

Pure-tone audiometry is the gold standard diagnostic test
for the assessment of hearing in the clinics and has remained
as such since the beginning of the previous century (Jones
and Knudsen, 1925). Pure-tone audiometry is a behavioural
test that estimates the absolute hearing threshold and it is
used to diagnose the severity and type of hearing loss. This
is the basis for aural rehabilitation, and thus the primary
measure for hearing aid fitting. A significant elevation of
hearing thresholds relative to the reference normal hear-
ing (NH) hearing thresholds are usually associated with a
damage in the periphery of the auditory system. However,
since the mid-twentieth century, it is known that hearing
thresholds do not represent all peripheral damage well. For
instance, damage to AN neurons are not associated with sig-
nificant threshold elevations assessed behaviourally in cats
(Schuknecht and Woellner, 1955). More recently, selective
damage to IHCs inflicted using ototoxic drugs in chinchillas
showed that the hearing threshold was not significantly
altered for IHC losses up to about 80% (Lobarinas et al.,
2013). In contrast, it is well known that damage to OHCs
is very well associated with pure-tone threshold elevation
(Ryan and Dallos, 1975).

It has been estimated that between 5 to 10% of the
patients in the clinics who show normal hearing thresholds,
self-report hearing difficulties particularly in challenging
acoustic environments (Saunders and Haggard, 1989; Ku-
mar et al., 2007; Hind et al., 2011; Tremblay et al., 2015).
These patients may suffer from hidden pathologies not re-
vealed as a threshold elevation in the pure-tone audiogram,
thus the termed ”HHL” was coined (Schaette and McAlpine,
2011). More precisely, a loss of cochlear synapses in the
absence of hair cell damage, named CS, has been reported

to be undetectable by pure-tone audiometry (Kujawa and
Liberman, 2009).

To overcome such limitation of behavioural measures,
the feasibility of electrophysiological measures for detecting
sensory loss has been investigated. CS is one of the most
well-studied types of HHL and has been demonstrated in
several animal models, such as mice (Kujawa and Liberman,
2009; Furman et al., 2013; Shaheen et al., 2015; Parthasarathy
and Kujawa, 2018), rats (Lobarinas et al., 2017), chinchillas
(Hickox et al., 2017; Hickman et al., 2018), guinea pigs (Lin
et al., 2011; Liu et al., 2012) and rhesus macaques (Valero
et al., 2017). CS has also been demonstrated in humans
(Makary et al., 2011; Viana et al., 2015; Wu et al., 2019, 2020,
2021). In non-human animal studies, it was shown that the
loss of cochlear synapses did not alter hearing thresholds as
assessed through auditory brainstem responses (ABR) and
distortion product otoacoustic emission (DPOAE) thresh-
olds. Nevertheless, synaptic losses resulted in a permanent
reduction of supra-threshold responses in the ABR (Kujawa
and Liberman, 2009) and the envelope following responses
(EFR) (Shaheen et al., 2015; Parthasarathy and Kujawa,
2018). Several studies have investigated the use of similar
auditory evoked responses in humans (e.g., Bharadwaj
et al., 2015; Mehraei et al., 2016; Bramhall et al., 2017; Liber-
man et al., 2016; Prendergast et al., 2017; Guest et al., 2017;
Fulbright et al., 2017; Encina-Llamas et al., 2019; Bramhall
et al., 2021; Encina-Llamas et al., 2021; Maele et al., 2021;
Märcher-Rørsted et al., 2022). Unfortunately, these studies
led to inconclusive results (Bramhall et al., 2019), showing
no clear effects in different groups of listeners suffering from
different degrees of CS, presumably. Although CS has been
associated with perceptual deficits, its impact on perception
remains unclear too (Plack et al., 2014).

Compared to behavioural tests, electrophysiological
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techniques are more time-consuming, more expensive and
require advanced equipment and specialised operators.
These deficits limit their applicability in a clinical setting
and motivate the need for a behavioural test that is sensitive
to HHL. Previous studies have compared electrophysio-
logical measures presumably sensitive to CS with some
behavioural tasks, such as amplitude modulation (AM)
detection (Bharadwaj et al., 2015), finding very weak cor-
relations. The decision of choosing one task versus another
was based on a heuristic interpretation of the function of
the peripheral auditory system. For example, Bharadwaj
et al. proposed an AM detection task with the hypothesis
that higher degrees of CS would degrade the detection of
shallower modulated tones. However, this hypothesis may
not be consistent with how AM depth is encoded at the
level of the AN, as suggested by physiological models of
the auditory periphery (Encina-Llamas et al., 2019, 2021).

The evaluation of any newly proposed behavioural tests
suggested after a heuristic interpretation of the function
of the hearing system could lead to a non-optimal trial-
and-error strategy. This evaluation would require testing on
dozens of listeners, which is excessively time-consuming
and expensive. An alternative could be a computational
approach. The development of a framework where pro-
posed behavioural tests could be simulated and evaluated
regarding its sensitivity to CS is of high interest. Using such
a framework would be a much more flexible and time-
efficient approach, as different parameters could be adjusted
in the theoretical computer framework without extensive
cost, and the feasibility of the test could be evaluated prior
to testing on actual participants.

Typically, two different approaches have been adopted
to simulate auditory perception. One approach considers
simplified assumptions regarding several auditory process-
ing stages and models the effective transformations of these
stages (e.g. Florentine et al., 1999; Jepsen et al., 2008; Moore
et al., 2016). These models can be termed model observers,
or heuristic observers (Geisler, 2011). Although heuristic
observers are generally faster to compute and can predict
some of the results from human perceptual tasks, the lack
of physiological detail represents a disadvantage for using
these models to relate different types and degrees of pe-
ripheral cellular damage to perception. A second approach
utilises detailed models of the auditory periphery that can
account for accurate neuronal representations of the AN,
using an optimal combination of the information available
in the nerve (e.g. Heinz et al., 2001a,b; Colburn et al., 2003;
Lindahl et al., 2019). With this second modelling approach,
using an ideal observer to optimally combine information
at the level of the AN usually requires a priori knowledge
of which segments to analyse in the AN response (i.e.,
a particular time window or one particular metric versus
another one). This forces the need to identify or guess the
task-relevant information contained in the stimuli. The ideal
observer model typically leads to a model that performs
much better than the real human observer. Then, by evaluat-
ing across some experimental parameter, it can be deducted
that both the real and the ideal observers make use of similar
properties or cues in the data, but the real observer is sub-
optimal or limited by usually unknown factors (Geisler,
2011).

For both modelling approaches, the derived observer is
inherently limited to the specific task. Even though some
models may be successfully transferred from one task to
another (Moore and Glasberg, 1996; Florentine et al., 1999),
potential key information may be still excluded or not
considered in the new task. Furthermore, identifying the
relevant cues of the stimulus are often impossible to derive
for real-world tasks.

This has led to a third novel approach, that is, using
a DNN model that will in extension to the AN model to
replace the ideal observer (Kell et al., 2018; Haro et al.,
2020; Saddler et al., 2021; Francl and McDermott, 2022).
DNN models have shown to reach human performance for
various visual tasks (Golan et al., 2020), and they have been
shown to obtain constraints and limits similar to humans
when trained on natural stimuli (Francl and McDermott,
2022). The deep layering structure of the DNN allows the
model to learn intermediate abstractions and combine these
optimally (Lecun et al., 2015). Furthermore, even when
trained for a specific task, the DNN might learn abstract
representations that are useful for other tasks. This is ex-
emplified by the general aspect of transfer learning (Tan
et al., 2018). When using DNN models on audio stimuli,
it was shown that some of the learnt features are similar to
some properties of the peripheral auditory system (Luo and
Mesgarani, 2019).

The human auditory system is a result of evolution and
thus an optimisation towards the environment in which
humans exist. Despite the optimisation of a DNN model
being purely artificial, the concept is similar. This makes the
DNN models practical for replacing the ideal observer, as
the models can be considered as an estimation of the ideal
observer with less constraints on the information, without
sacrificing the generality and applicability of the AN-model.

In this study, we have used a state-of-the-art model of
the AN together with a convolution neural network (CNN)
to investigate the potential use of gap detection to estimate
CS in human listeners.

Lobarinas et al. showed elevated GDTs for chinchillas
with substantial IHC-loss. Zeng et al. showed elevated GDTs
in human patients with neuropathy. This may indicate that
gap detection thresholds is sensitive to CS. We build and
evaluated a computer modelling framework to test this
hypothesis.

2 METHOD

2.1 Modelling framework

The general pipeline is described in fig. 1. Each block rep-
resent one general stage in the model framework, starting
from the acoustic stimulus to the final decision variable. The
inclusion of a physiologically-plausible AN-model allows
for sufficient control over key parameters of the auditory
periphery.

2.1.1 Stimuli

All stimuli were generated digitally with a sampling fre-
quency of 100 kHz and saved as 64 bit floating-point en-
coded Resource Interchange File Format (RIFF) files. Stimuli
was normalised by its respective root mean square (RMS)
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Stimuli AN-model Neurogram

Observer Gap / No Gap

Fig. 1. Full feed-forward model structure, from stimulus to gap/no-gap
label. Stimuli are the generated sounds. The AN model simulates the
neural activity in response to the stimuli. The neurograms are con-
structed based on the output of the AN model, and then parsed to the
observer (e.g. the DNN model), which outputs the probability of ”gap”
and ”no gap”.
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Fig. 2. Control parameterscihc and cohc for each of the elevated audi-
tory threshold conditions inflicted by either a combination of OHC and
IHC dysfunction (green) or either IHC (red) or OHC (orange) dysfunction
only, respectively.

value and calibrated to distinctive sound pressure levels
(SPLs) from 20 to 100 dBSPL in steps of 5 dB.

The model framework does not impose any constraints
on the presented stimulus. However, when using a DNN-
model, the stimuli for training should follow the same
considerations as when training any deep learning model.

For a more detailed description of the stimuli used for
training the DNN model, see section 2.5.1.

2.1.2 AN model
The model of the AN by (Bruce et al., 2018) was used to
simulate the AN response to sound. The humanised version
of the model was used following similar parameters as
used in previous studies (Encina-Llamas et al., 2019, 2021;
Lindahl et al., 2019). In brief, the model simulated 200 char-
acteristic frequencys (CFs) ranging from 125 to 20 000Hz. A
total number of 32 000 AN fibres, non-uniformly distributed
along the CF axis (Spoendlin and Schrott, 1989), were sim-
ulated for the NH case. The distribution of AN fibres types
were selected as 61% of high spontaneous rate (SR) (HSR)
fibres, 23% of medium SR (MSR) fibres and 16% of low SR
(LSR) (Liberman, 1978).

For the CS simulations, the total number of fibres was
reduced uniformly across CF and fibre type by a percentage
loss from 20 to 80% in steps of 20%. For each CF, all the in-
dividually simulated fibres ascribed to that CF were added
representing a summed response as function of time. The
time-bin resolution is limited by the sampling frequency of
the model (100 kHz). This time resolution was later reduced
when constructing the neurogram (see section 2.1.3).

Two auditory thresholds was simulated, matching the
two groups, NH and neuropathy (NP), from (Zeng et al.,
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Fig. 3. Simulated model threshold for the NH and the NP hearing thresh-
old condition from (Zeng et al., 2005). The NP threshold are simulated
using three different combinations of IHC and OHC dysfunction. The
solid lines show the simulated model threshold for the NH, 2/3-OHC
1/3-IHC, all-IHC and all-OHC conditions in blue, green, red and orange,
respectively. The dashed lines show the mean thresholds from 125 to
8000Hz for each simulated threshold .

2005). For the NH simulations, no impairment of the audi-
tory periphery was implied. For the NP simulations, the
MATLAB-function ‘fitaudiogram2‘ developed by (Zilany
et al., 2009) was used to impose IHC and OHC dysfunction
to account for the elevated hearing thresholds. We used
three dysfunction conditions with different combinations of
IHC and OHC dysfunction, namely 2/3-OHC 1/3-IHC, all-
IHC and all-OHC. Figure 2 shows the dysfunction control
parameters for the three dysfunction conditions across CF.
The control parameters cihc and cohc modify the IHC trans-
duction and the OHC gain in the model for each simulated
CF. The control parameters range from 0 to 1 ; 0 represent-
ing complete dysfunction and 1 representing healthy cells.
Thus, the NH case was simulated with a constant value of 1
for both control parameters of IHC and OHC function. For
the all-IHC and all-OHC conditions, the opposite control
parameter is not completely 1 at all CF (middle and right
panels in fig. 2). This is caused by the fitting process not
being able to account for the full hearing threshold elevation
by adjusting only the IHC or the OHC parameter. Figure 3
shows the simulated model threshold for all four AN model
conditions using the method presented in (Encina-Llamas
et al., 2018). For each CF, the method simulates a fixed
number of 100 AN fibres for a pure-tone and silence to
obtain two AN rate distribution (sound-driven activity vs
spontaneous activity). A two-sample permutation test for
equality of the means (Ernst and Bülthoff, 2004; Fisher, 1935)
with 10000 permutation and a significant level of 1% was
used to find the model threshold.

2.1.3 Neurogram
The output of the AN model can be represented by a matrix
of dimension T × F × N , with F being the number of
simulated CFs, N the total number of time steps and T
the AN fibre type. For a 1 s simulation, this results in
F = 200 and N = 100000 per fibre type, which would
require an immense amount of computational power for the
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DNN model, following this block. In animal physiological
recordings, neuronal responses are typically shown in the
form of a peri-stimulus time histogram (PSTH). A PSTH
implies binning together the spike counts within a time
window. Previous studies that have used a similar setup
with a model of the AN preceding a DNN model applied
a temporal window to reduce the input along the temporal
axis. Various window lengths have been used ranging from
0.05ms in Saddler et al. (2021), 0.125ms in Francl and
McDermott (2022) to 8ms in Haro et al. (2020). These studies
used the combined setup to simulate pitch detection tasks
(Saddler et al., 2021), binaural processing tasks (Francl and
McDermott, 2022) and a task of speech recognition of digits
(Haro et al., 2020).

The AN-model simulates the response of all the three
AN fibre types independently (i.e., LSR-, MSR- and HSR).
The framework allows for generating neurograms (S) with
and without such third dimension of fibre type (see eq. (1)).

S ∈ R1×200×800 ∨ S ∈ R3×200×800 . (1)

In the case of summing across fibre type, the AN representa-
tion was a 2-D input matrix of size F×N . On the other hand,
if fibre type would not have been summed, the input matrix
would be a 3-D matrix of the form T × F × N . Hence, the
general model framework allows for either single channel
or multi-channel neurogram, similar to the grey-scale or red,
green and blue (RGB) colour image representation used as
inputs to DNN models.

In the present study, all the contributions of all three fibre
types were added to obtain a summed neural response per
CF. This was decided based on considerations discussed in
section A.4. A window size of 1ms was used in the time
binning, with no overlap.

2.1.4 Observer
This part of the framework was designed such that any
model, in theory, could be evaluated. The requirement was
simply a model that would compute a decision variable
based on a single neurogram, ideally in the range [0, 1],

model : RT×F×N → R . (2)

The present study considered two types of models, a
DNN based model (section 2.3) and a neurometric (NM)
model (section 2.4).

If the model is capable of adapting to training data, e.g.
such as the DNN-model, the framework enables the selec-
tion of distinct training data to be used and efficient loading
of training data in mini-batches. This is used to evaluate
the output of a model architecture trained on different data,
which allows to investigate the aspects of the model being
exploited during its optimisation process.

2.2 Gap detection thresholds

In literature, most GDT measurements use a n-alternative
forced choice (AFC) experiment paradigm, with a 1-up,
2-down paradigm. To get a comparable measure for the
framework, a setup using multiple samples of a range
of gap lengths was used. The output of the DNN model
was computed for a number of simulations without a gap,

enabling the derivation of an internal response distribution
for the no gap (noise) condition. A similar internal response
distribution for the gap condition (noise + signal) was
computed for a number of different lengths, spanning a
range from very short gaps expected to be undetected to
sufficiently long gaps expected to be detected.

The output of the DNN model was computed for 15
individual simulations for the no gap condition, and 15
simulations for each gap length conditions in the range from
1 to 39ms, in steps of 1ms, accumulating to 600 samples per
test condition.

The DNN model was trained as a multi-class classi-
fier with two output classes, ”gap” and ”no gap”. The
DNN model used softmax as activation function, thus the
summed output would always amount to 1 and therefor the
output for the class ”gap” was solely used in the computa-
tion of GDT.

To obtain a comparable threshold for each model, a
psychometric function with location and scale was fitted to
the direct output of the DNN model to determine whether a
gap was detected or not. An optimal fit for a model should
have the location l as the mean of the output for the no gap
condition and scaled with s such that the maximum value
of the fitted function is the mean of the longest simulated
gap length, to ensure that this is detected. This method
is comparable with that of an optimal detector, where the
decision criterion is set to the average of a given noise
and noise + signal distribution (e.g. Jones, 2016), and thus
generalises to other detection tasks.

We used the following definition of a psychometric func-
tion with location l and scale s,

psy(x, α, β, l, s) = l + s
1

1 + exp
(
−x−α

β

) , (3)

where x is the gap length, α the centre position and β the
slope of the psychometric function.

Another method used was to fit the psychometric func-
tion to the ratio of correct answers. The threshold of the
decision variable to be correct was set to 0.5, indicating a
more conservative approach. In this case, the placement of
the no gap condition at 0ms does not lead to a meaningful
interpretation, hence it was excluded from the fitting process
of the psychometric function. Furthermore, the location and
scale was fixed by l = 0 and s = 1, as the ratio of correct
answers should start at 0 for gap lengths where no gaps are
detected, and converge to 1 for gap lengths where all gaps
are detected. This simplifies eq. (3) to

psycorrect ratio(x, α, β) =
1

1 + exp
(
−x−α

β

) . (4)

A third method was evaluated by computing an ideal
decision criterion based on the model response. We ob-
served that the DNN-model showed a bias towards higher
output values when the level of the stimuli was low. Using
fixed thresholds for all input levels is comparable with a
yes/no task, while deriving an ideal threshold resembles
more an AFC task. The ideal threshold was computed using
the mean of the response to the no gap condition E [dvnoise]
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and the mean of the response to the largest gap condition
E
[
dvnoise + signal

]
(39ms),

dcideal =
1

2

(
E
[
dvno gap

]
+ E

[
dvlongest gap

])
. (5)

Using a 1-up, 2-down scheme, the GDT should indicate
a gap length where the listener detects 70.7% of correct
responses (Levitt, 1971). This point relates to the psychome-
tric function, as the function is an estimate of the expected
ratio of correct responses. The threshold of the model was
selected from deriving the intersection of eq. (4) at a given
correct ratio p, leading to:

psyx(α, β, p) = α− β log

(
1

p
− 1

)
. (6)

Note that this computation is independent of location and
scale, as the placement along x only depends on parameters
α and β

2.3 Deep neural network model

The deep learning modelling was implemented using the
Python framework PyTorch (Paszke et al., 2019).

The model architecture was based on the general out-
line used by Kell et al. and modified by Haro et al.. It
consisted of five convolutional blocks, followed by a fully-
connected layer, a rectified linear unit (ReLU) activation
layer, an output-layer and finally a softmax activation layer.
Initial experiments in the present study indicated that model
architectures with multi-dimensional kernels (e.g., kernel
sizes larger than unity in the CF axis) outperformed human
behaviour substantially and were insensitive to CS. This led
to the choice of considering temporal-only kernels (i.e., a
dimension of 1 in the CF axis).

The general structure is shown in fig. 4. For each
convolutional-block, the number of kernels is dependent
on a channel-factor, C . Thus, the total number of kernels
for each layer is based on this factor. This is used for the
convenience of having a single scalar for modifying the
number of kernels as a hyper-parameter.

Conv-block 1 1 · C [1, 16] [1, 3]

Channels Kernel Stride

Conv-block 2 2 · C [1, 12] [1, 2]

Conv-block 3 4 · C [1, 8] [1, 1]

Conv-block 4 8 · C [1, 4] [1, 1]

Conv-block 5 8 · C [1, 4] [1, 1]

Fully Connected-block
Size: 512

Output-block
Size: 2

Fig. 4. Overview of the building blocks in the DNN-model architecture,
with C as the channel-factor.

Each convolutional-block followed the structure shown
in fig. 5. The input to the convolutional layer was zero-
padded; hence the output retained the size (when stride=1).
In the example of one-dimension, the input would be zero-
padded due to the kernel-size k of the convolutional layer:

padding =

(
k −

⌊
k

2

⌋
− 1,

⌊
k

2

⌋)
. (7)

In case of an uneven kernel size, the sides were padded
equally by

⌊
k
2

⌋
− 1. For even kernel sizes, the left side

were padded by 1 less than the right side. This is slightly
different from the implementation of same-padding in the
PyTorch Conv2d-class, and rather follows the method used
in the deep-learning framework in TensorFlow (Abadi et al.,
2016). The padding described above was applied for multi-
dimensional kernels as well. In the present study, all con-
volution operations were using the 2-dimensional imple-
mentation in PyTorch. The kernel-sizes with one dimension
equal to 1 were equivalent to a 1-dimensional convolution,
but performed on each CF index.

The convolution layers used a variable number of chan-
nels, kernel size and stride, based on the hyper-parameters
of the model (fig. 4). The layers also included bias, which
for the actual implementation resulted in the following
computation for convolving the layer weights W with the
input X and adding the bias B.

Yj = Bj +
Cin−1∑
k=0

Wj,k ⋆ Xi,k , (8)

with Cin being the number of input channels, j denoting
the output channel index and ⋆ is the 2-D cross-correlation
operator. The learnable weight matrix was thus of size
RCout×Cin×k0×k1 , for a convolutional layer with kernel size
(k0, k1). The bias B is a single scalar for each output
channel, thus RCout .

The activation function used for the convolutional blocks
was the ReLU function. This is the simplest rectifying acti-
vation function. Further optimisation by evaluating variants
of the ReLU was not considered. Normalisation was done
using local response normalisation (Krizhevsky et al., 2012),
with fixed parameters of size n = 5, multiplicative factor
α = 1e− 3 and exponent β = 0.75. Pooling was done using
average pooling, with a 2-dimensional kernel of size (1, 3)
(i.e., pooling was done in the time domain only) because the
convolutional kernels only included the temporal dimen-
sion.

A fully connected block was placed after the series of
convolution blocks. The output of the last convolution block
was flattened to enforce a 1-dimensional representation of
the 2-dimensional operation. Then followed a fully con-
nected layer, a dropout layer and an activation layer, which
for all cases was ReLU. This was decided based on previous
evidence showing that the ReLU function is prominent in
speech recognition tasks (Zeiler et al., 2013).

The output block consisted of a block with 2 neurons,
one for each output label, followed by a softmax activation
layer.

All DNN models were trained as a multi-label classifica-
tion problem, with 2 labels: ”gap” and ”no gap”. We used
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Zero-Padding

Convolution

Activation
ReLU

Local Response Normalisation
n = 5, α = 1× 10−3, β = 0.75

Average Pooling
kernel: (1, 3), stride: (2, 2)

Fig. 5. Overview of a single convolutional block. The zero-padding is
added such that the output of the convolution is shaped similarly to the
input.

binary cross entropy for computing the loss, as implemented
in PyTorch, where the loss for each label ln is computed by

ln =yn ·max (log(xn),−100) (9)
+ (1− yn)max (log(1− xn),−100) , (10)

with the log-functions clamped by −100 to avoid −∞. The
mean of the label losses is used as the total loss L for the
given sample,

L(x, y) = 1

N

N−1∑
n=0

ln . (11)

The training was performed using mini-batches of 64
samples. We used the ADAM optimiser (Kingma and Ba,
2015) with a weight decay of 0.5 and a learning rate of
0.0001, as implemented in FastAI (Howard and Gugger,
2020). Here, the applied regularisation is the product of the
weight decay parameter and the learning rate.

A common method to extend the dataset used for train-
ing deep learning models is data augmentation. The simu-
lated neurograms were 800 samples long, but the input of
the DNN-model was chosen to support only 700 samples.
This allowed for data augmentation by randomly shifting
the input by up to 50 samples, and still retain the onset and
the full length of the marker.

2.4 Neurometric model
To have an ideal equivalent model for comparison with the
DNN model, we developed a simple model based on the
immediate available information in the neurograms. The
model used the change in rate with the a priori knowledge
of position of the gap in the stimuli. This is a rather simple
concept, exploiting rate as the primary information source,
without extracting additional metrics such as synchrony or
other second order metrics.

The neural metric model used the mean rate across
CF, simply by summing all CFs for each time bin. Using
the definition of the neurogram in eq. (1), the summed
representation is defined by

sNM(n) =
1∨3∑
t=0

200∑
f=0

S(t, f, n) . (12)

Note that for both neurogram definitions with either all fibre
types summed or as different channels, the 1-dimensional
reduction mentioned before is identical.

To reduce the fluctuation of the rate in each bin, the
neural metric model used a moving average window, im-
plemented by convolving the 1-D neurogram with a kernel
of size K , with the kernel weights wk defined by

wk =
1

K
, (13)

using the same definition as in eq. (8), but without bias. In
the 1-dimensional case, this simplifies to

y = w ⋆ sNM . (14)

The forward difference of the averaged neurogram was then
computed, and the resulting output was truncated from
200 to 600ms. The difference between the maximum and
minimum forward difference was computed as the decision
variable,

dv = max

(
dy

dt

)
−min

(
dy

dt

)
, (15)

where
dy

dt
≈ ∆y

∆t
, (16)

with ∆t = 1ms. To use and compare the model within the
given framework, the output values for each experiment
parameter were normalised by the no-gap condition and the
longest simulated gap length condition. This gave a decision
variable in the range [0, 1]. This normalisation requires an
extra step in terms of the general structure of the modelling
framework proposed.

2.5 Datasets
The full set of generated stimuli was divided into two main
groups; training and testing. The DNN-model was only
evaluated on the test data; i.e., the weights of the model
were not updated in accordance to the loss associated with
the testing samples.

2.5.1 Training dataset
The training data consisted of the two main groups of
data. The first group of training data used the broadband
Gaussian noise stimuli used in (Zeng et al., 2005), but with
the gaps placed off-centre in four different times from the
onset; 250, 300, 450 and 500ms. This subset contained 300
gap samples and 300 no-gap samples. The 75 gap lengths
were selected by first computing 75 equally spaced lengths
from 1 to 41, and later converting them using the following
equation:

y = 10
x
20 , (17)

The log-spaced gap lengths were finally mapped to the
range between 1 to 50ms as:

ymapped = 1 + 49
y −min(y)

max(y)−min(y)
. (18)

This emphasised gap lengths of short duration. The BBN
training set was simulated at 11 sound levels, normalised
by the total RMS value of the SPL of the given sample.
The sound levels ranged from 20 to 70 dBSPL, in steps of
5 dBSPL.
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The second group of training data used more naturalistic
stimuli, namely multi-babble noise, in which a gap was
added. Gap duration and position was sampled uniformly
for 400 samples of each babble noise condition (see section C
for a full description). Each sample was presented both with
and without gap to avoid any sample specific cues for each
sample. Each n-talker condition was simulated at 10 sound
levels; 20, 25, 30, 40, 50, 60, 70, 80, 90 and 100 dBSPL. The
number of talkers ranged from 3 to 8 , amounting to 48 000
simulations.

All training and testing simulations had a total duration
of 800ms. The noise stimuli were preceded by a period of
100ms of silence. The duration of the noise stimuli was set
to 500ms, and was then followed by 200ms of silence. All
edges of the stimuli (i.e., the onset and offset of the noise and
the gap) were ramped by a Hann-function of 5ms. The first
half of the window was used for onsets, while the second
half was used for offsets, thus the ramp duration was 2.5ms
at all instances. All ramps were centred at the onset/offset
time. See fig. 11 for an illustration of the applied envelope
to the noise stimuli.

2.5.2 Testing

The testing dataset were simulations obtained using the
same stimuli as used in (Zeng et al., 2005) for gap detection.
These simulations was simulated as described for various
degrees of CS and IHC and OHC dysfunction as described
in section 2.1.2. The GDT obtained by Zeng et al. (2005)
was presented in sensationlevel(SL), thus we converted
the presentation levels by using the simulated pure-tone
average threshold (PTA) for each of the auditory threshold
conditions, shown in fig. 3. We trained four DNN models
with the same hyper parameters, but randomly initialised
weights. The GDT were obtained for each model, thus
considering each model as an independent listener.

We found simulating an n-AFC to introduce additional
variance when simulating a simple equivalent setup with
normal distributions to model the internal response and
thus we used the methods described in section 2.2.

We used psychometric functions fitted to percentage
correct using an estimated ideal decision criterion, based on
the considerations described in section A.5.

3 RESULTS

3.1 Sensitivity to CS

Figure 6 shows the effect of CS using the DNN model
and the NM model, compared to the reference results from
Zeng et al. (2005). The leftmost panel shows the group-
averaged results from Zeng et al. (2005) for the 7 NH
listeners and the 20 NP listeners. The human results show a
clear difference in GDT between the groups, particularly at
supra-threshold levels. At presentation levels near hearing
threshold (5 dBSL), the mean GDT for the two groups were
similar. For increasing presentation level, the GDTs for the
NH group quickly reduced as a function of presentation
level, flattening out at higher presentation levels beyond
40 dBSL. In contrast, the GDTs for the NP group decreased
more shallowly and flattened out between around 13ms
until 40 dBSL, where they decreased further.

The simulated GDTs as a function of presentation level
are shown in the middle panel. The results of the DNN
model showed a difference between the simulated GDTs
with 80% of CS versus NH. Similar to the human data,
the simulated GDTs decreased rapidly with increasing pre-
sentation level flattening out at supra-threshold levels. In
contrast to the human data, the simulations with CS did not
lead to a shallower decrease of GDT with increasing level.
It did show a similar decrease at 40 dBSL with the human
data. The simulated GDTs in the DNN model were slightly
higher than the human threshold for the NH condition. The
CS condition was simulated without imposing dysfunction
to either IHCs and OHCs. Thus, the only change in the AN
model between the two results in the DNN model is the
number of AN fibres, which were evenly reduced for all
fibre type and across all CFs.

The simulated results using the NM model with a win-
dow length of 15ms are shown in the rightmost panel.
The simulated GDTs showed no difference between the NH
condition and the CS condition. The reduction of GDTs with
increasing presentation level could also be observed using
this model.

3.2 Sensitivity to hair cell dysfunction
Figure 7 shows the DNN model results from fig. 6 along
with the simulations using the combined 2/3 OHC and
1/3 IHC dysfunction to account for the elevated auditory
threshold of the NP group in (Zeng et al., 2005). The GDT
is slightly lower for the simulated NP group at supra-
threshold for both with and without CS. The NP show a
steeper decay in GDT as a function of level, most notably
by the NP results without CS which shows a GDT of 3ms
at a presentation level of about 12 dBSL. At the highest
presentation level, the GDTs for the NP condition starts to
increase while the CS condition show some fluctuation, ulti-
mately reducing the difference between the two conditions
at the highest presentation level. For both simulated groups
without CS, the GDTs decays to a minimum level before
increasing again. Notably at 28 dBSL for the NH condition
and at 18 dBSL for the NP condition.

3.3 Sensitivity to specific hair cell dysfunction
Figure 8 shows the effect of independent hair cell dys-
functions, primarily by either IHC or OHC dysfunction.
The all-IHC results show a large increase in GDT before
lowering at 20 dBSL. It doesn’t appear to reach a plateau
similar to the other simulation conditions, however simulat-
ing higher presentation levels (above 100 dBSPL) would be
unrealistic, given that this pressure level would be highly
uncomfortable and damaging for the test subject. The all-
OHC dysfunction case shows an even more rapid decay,
compared to the other conditions, and generally obtains the
shortest GDTs across all conditions. A dip in GDT is seen
right after the initial decay, when following the GDT for the
all-OHC condition from the lowest presentation level and
onward. This dip is similar to the one observed for the other
simulation conditions without CS, excluding the all-IHC
dysfunction. The increase towards maximum presentation
level is less clear compared to the result for the combined
OHC and IHC dysfunction in fig. 7. The simulations didn’t
include any degree of CS.
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Fig. 6. Effect of CS on simulated GDTs as a function of presentation level (in dBSL for the DNN (middle) and NM (right) models compared to the
reference results in humans from Zeng et al. (2005) (left). Downward solid triangles show GDTs for the NH results. Open circles (left panel) show
the human NP results in Zeng et al. (2005). Downward open triangles (middle and right panels) show simulated GDTs for models including 80%
of CS. Error-bars indicate the ± SE. For the DNN-model, this was computed from 4 identical model architectures, while the behavioural results
included 7 NH listeners and 20 listeners with NP.
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Fig. 7. Effect of combined OHC and IHC dysfunction (green) as function
of presentation level (dBSL) in combination with the simulated NH GDT
(blue) copied from the middle panel of fig. 6. Open symbols show the
results for the simulations with 80% CS.
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Fig. 8. Comparison of GDT by simulating all-IHC (red) and all-OHC
(orange) dysfunction as a function of presentation level (dBSL).

4 DISCUSSION

4.1 General overview
We developed a model framework for evaluating be-
havioural tests that could be sensitive to hearing impair-
ments not reflected by an audiogram. Specifically, we eval-
uated this modelling framework on a gap detection task for
both a simplistic NM model and a DNN model following a
detailed model of the AN.

We trained the DNN model on NH simulations of 500ms
long gap carriers (noise stimuli containing a gap) on com-
binations of babble noise and BBN. We found that it was
needed to include more naturalistic stimuli in the training
data (see section A.2) to achieve human-like behaviour, as
similarly found in previous studies (Saddler et al., 2021;
Francl and McDermott, 2022).

We then evaluated the DNN model on a test set with NH
neurograms and neurograms with various impairments in-
flicted by either a combination of IHC and OHC dysfunction
and separately, with and without CS. Both the DNN and
the NM model resulted in near human-like performance in
the normal hearing case. While the DNN model showed
elevated GDTs for a high degree of CS, the NM model
showed little to no difference related to CS. Furthermore,
the DNN model showed equal or lowered GDTs when the
simulated auditory threshold shift was imposed majorly by
OHC dysfunction.

4.2 Sensitivity to CS
In fig. 6 we reproduced the data for the gap detection task in
(Zeng et al., 2005) for the two groups, NH and NP. Starting
with the NH, it can be observed that the GDT is largely
affected by the sound presentation level. At higher levels,
the GDT seems to reach a plateau. This is in agreement
with the findings in studies evaluating the effect of level
on gap detection (Irwin et al., 1981; Buus and Florentine,
1985; Moore et al., 1992). Moore et al. (1992) described a
comparable effect when measuring GDT with pure-tone
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carriers at different frequencies. They found that the GDT
reached an asymptote at 55 dBSPL for all tested frequencies
between 100 to 2000Hz.

A clear change in GDT is seen between the NH and
NP groups (left panel in fig. 6). The GDTs in the NP
group shows a larger variance. This is consistent with other
studies reporting larger GDT variance in impaired listeners
compared to NH control (Irwin et al., 1981; Fitzgibbons and
Wightman, 1982; Buus and Florentine, 1985; Moore et al.,
1992). This may indicate that the underlying mechanisms
are affected in different degrees. Furthermore, this difference
in GDT wasn’t associated with the differences in auditory
hearing thresholds for the groups.

The mid panel of fig. 6 shows the modelled GDT for
NH simulations with and without CS. The GDT for the
CS condition was elevated, but not as much as for the NP
group from Zeng et al. (2005). The human results indicated
a common limit at low presentation levels for both groups.
This similar shared point of limitation was not observed in
the model results with and without CS. Rather, the results
with CS seems to be shifted by presentation level. This
might be explained by various factors further discussed in
section 4.5.

The NM model seems to achieve GDTs closer to the
human results for the NH condition. However, there is
no clear elevation of the GDTs for the CS case. For the
other conditions of hearing impairment, similar results were
obtained, thus the NM indicates no peripheral impairment
affecting the GDT, contrary to the results presented by
Lobarinas et al. (2020). At low presentation levels, a shift
of around 5 dB was observed, similar to the shift observed
for the DNN model.

4.3 Sensitivity to hair cell dysfunction

The effect of hearing impairment on the DNN model was
simulated by fitting the mean audiogram of the NP group
from Zeng et al. (2005) to the AN model, both with and
without CS. The results are shown in fig. 7. The simulated
results showed an overall reduction of the GDT in the
hair cell impairment condition, both with and without CS.
This is opposite to the expected effect and the experimen-
tal results shown in literature. The plot obtained for the
combined IHC and OHC dysfunction, with and without CS,
closely resembles two individuals measured by (Buus and
Florentine, 1985). One subject showed GDT comparable to
the NH group, while another subject obtained a minimum
GDT at around 7ms. Furthermore, the latter subject had
considerably lower auditory thresholds than the former. As
the presentation level is increased beyond 70 dBSPL, the
DNN model generally produced higher GDTs. A similar
effect was observed in several human studies with noise
carriers of different spectral width (Buus and Florentine,
1985; Moore et al., 1992).

Studies on the effect of stimulus frequency on GDT
have shown higher thresholds for lower centre frequencies
(Shailer and Moore, 1983; Florentine et al., 1999). It has
been proposed that the ”ringing” of the basilar membrane
(BM) response could contribute to this added constraint.
The BM does not instantaneously stop moving at the offset
of a stimulus. For higher frequencies, this effect may be

minimal as the vibration of the BM decays more quickly.
By modelling the BM as a filter bank with time-varying
level-dependent filters to model the effect of OHC gain on
BM motion, the low CF filters ”ring” for a longer duration
due to their broader frequency tuning. This effect is easily
observed in the neurograms at the offset of the BBN car-
rier. Two effects depending on stimulus level were visible.
Firstly, toward low levels, the onset following the gap was
weaker while the firing did not completely stop during
the gap. Both properties reduced the distinctiveness of the
onset following the gap. Secondly, towards high levels, the
tail following the onset of the gap increased in duration,
potentially obfuscating the onset following the gap. The
combination of these two effects could explain how the GDT
increased for very low and very high presentation levels.

When OHCs are impaired, the sharp tuning of the BM is
reduced. In line with the above, the neural firing following
the onset of the gap is reduced. This would explain the
reduced GDT for the combined IHC and OHC simulations
and all-OHC simulations without CS (figs. 7 and 8). The
reduced activity was clearly observed in the neurograms.

4.4 Effect of either IHC or OHC dysfunction
As shown in fig. 8, GDTs were substantially increased for the
all-IHC dysfunction simulation. The DNN model showed a
large bias towards ”gap” up until about 20 dBSL, similar
to the response for the NH simulations at low levels. This
bias is discussed in further depth in section 4.6.5. Further-
more, the DNN model did not achieve above 70% correct
responses at 10 dBSL. The psychometric functions fitted
for the correct responses for up to 20 dBSL were fitted to
responses that did not reach 100% correct within the gap
length range included in the test set. Thus, the data basis for
the thresholds is worse for these presentation levels. From
about 20 dBSL, the GDT curvature started to resemble the
NP with CS simulation in fig. 7 from about 10 dBSL. The
effective threshold seems to be higher than the computed
PTA, thus making it difficult to evaluate how the GDT
compares if a lower hearing loss was simulated.

From the simulated results shown in fig. 7 and fig. 8, it
seems clear that the GDTs of the DNN model were affected
by impairment involving IHC dysfunction and AN fibre
loss, but largely insensitive to threshold shifts due to OHC
dysfunction. On the contrary, OHC dysfunction resulted in
lowered GDTs for the DNN model. The reduction of GDTs
has not been observed in any hearing impaired human data,
which only showed equally good or worse GDT.

The combination ratio of 2/3-OHC and 1/3-IHC dysfunc-
tion was based on the suggestions stated by (Lopez-Poveda
and Johannesen, 2012). However, within their results, a
large variability exists. This might indicate differences in the
combination of IHC and OHC dysfunction in different indi-
vidual listeners and could additionally be an artefact due
to using forward masking paradigms to estimate cochlear
compression (Lindahl et al., 2019). The relation between the
degree of IHC dysfunction onto GDT is not clear from our
results. To better understand the effect of IHC dysfunction
in this relation, simulations for various combinations of IHC
and OHC dysfunction would be valuable. In comparison,
the degree of CS affected the GDT exponentially at pre-
sentation levels above 25 dBSL. The same analysis couldn’t
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be evaluated for the degree of IHC dysfunction due to the
missing data points. To further understand the effect of IHC
dysfunction, different auditory thresholds solely inflicted by
IHC dysfunction, using the cihc parameter should evalu-
ated.

4.5 Auditory thresholds

We computed the auditory thresholds of the model frame-
work based on the output of the AN model with a limited
set of fibres. This method is fast and it’s favourable in terms
of the DNN model only being trained for a single task.
For the setup of the DNN model, where the output is the
classification of either gap or no gap, it’s not possible to
determine a direct threshold of a given sound. This poses
a problem when comparing the results of the model with
human results obtained in SL with no reference for the
auditory threshold of the given stimuli. The method we
used for computing the auditory threshold isn’t sensitive
to CS, however, CS would theoretically increase the audi-
tory threshold, shown by (Oxenham, 2016). Lobarinas et al.
(2020) also observed threshold shifts, though within what
would be categorised as NH. As Lobarinas et al. (2020)
didn’t measure IHC dysfunction apart from complete loss,
it’s unclear whether the discrepancy with the theoretical
caused by CS is due to the combination of information
in Oxenham (2016) or undiscovered IHC dysfunction in
addition to the IHC loss in the animals.

The GDT shown for NH and 80% CS in fig. 6, indicates
a upward shift for the CS condition along level. This might
be explained by the auditory threshold shift due to CS,
as described above, but it gets more complicated when
we compare with the simulations with combined IHC and
OHC dysfunction shown in fig. 7. Here, the CS condition
seems shifted. Additionaly, this might as be an discrepancy
between our method of computing SL and the method used
by (Zeng et al., 2005) as they used the auditory threshold for
the carrier with no gap, while we used the PTA as reference.

4.6 Framework details

4.6.1 Spikeogram parameters
In (Zeng et al., 2005) it’s suggested that temporal process-
ing depends on a synchronised spike code for working
optimally. However, the fine structure of the sound was
effectively removed as we transformed the AN simulations
to neurograms. By using a bin width of 1ms, we removed
any frequency components of the spike code above 500Hz.
This information doesn’t seem critical and even without, the
DNN model learned features dependent on the redundancy
of AN fibres. By reducing the bin width, we would remove
less information but at the computational expense of a larger
input. Phase locking is said to be a factor up to 1.5 kHz, thus
an optimal bin width would be at least twice this frequency,
i.e. at least 3 kHz. This might be a reason why the results are
good for (Saddler et al., 2021) and (Francl and McDermott,
2022), as by using sampling frequencies at 20 kHz and 8 kHz
respectively, allows the DNN model to gain advantage from
said phase locking cues. We didn’t evaluate this as changing
the bin width also changes the temporal length of the
kernels, making it difficult to compare.

4.6.2 Stride of convolutional kernels

The DNN model was implemented with stride for the
longer kernels in first two convolution blocks. This is usu-
ally implemented to reduce the size of the feature space
following the processing block, effectively down-sampling
the input with learnable filters. Following the convolution
layer we applied average-pooling, further reducing the
size. This setup originated from the models with multi-
dimensional kernels, discussed in section A.1.1, and was
only changed in the spectral domain, thus that the kernels
didn’t stride in the spectral domain. The pooling layer still
strided by 2 in both dimensions, though pooling kernel only
averaged in the temporal domain. We therefore checked
whether an effect was visible by setting the stride to 1 for
all dimensions, with the conclusion that the major trend
wasn’t different, however the GDT across level was less
fluctuating. Furthermore, the general thresholds was higher
for the models with stride set to 1, thus the original results
are kept.

4.6.3 Temporal only vs. spectral and temporal

We used the DNN model architecture with temporal-only
kernels, as the DNN models with multi-dimensional ker-
nels obtained GDTs substantially lower than the human
reference, furthermore, these models wasn’t substantially
sensitive to CS with only ≈1ms elevation (see section A.1.1).
However, the temporal-only models didn’t obtain as low
GDTs as the NH human reference and showed a shift in
threshold by simulating CS similar to the NP reference,
though not as profound. A study using spectral-modulation
filter banks was able to predict the trend of a frequency
dependent gap detection task, but the model obtained sig-
nificantly higher thresholds (Sanchez and Dau, 2016), sug-
gesting an interplay of temporal and spectral information.

In the comparison between models with temporal and
spectro-temporal kernels, we can deduct that the deep
representation learned by the models with temporal-only
kernels are highly dependent on the information provided
by having more functioning AN-fibres, reflected by the
increased GDT. However, there is evidence of spectro-
temporal receptive-like fields in the auditory brain stem
(Schönwiesner and Zatorre, 2009), thus it can’t be excluded
that along the auditory brain-stem, 2-D convolutional like
receptors exist.

Gap detection is a simple task and the stimuli firing pat-
tern in the AN is simple compared to more complex sounds,
such as speech. The model is optimised towards the task and
by the data presented. The cues needed for gap detection
alone might be more simple than the cues used for speech
recognition, thus enabling the spectro-temporal kernels to
overfit to the task by learning shapes that otherwise would
be used to encode the more complex shapes of speech.

The first layers of a CNN can learn to extract envelopes
of the input. With the rectifying non-linearity, the layers
can show resemblance with an envelope extractor in which
the signal is squared and then low-passed. The following
layers are not different, thus these are capable of learning to
extract the modulation of the envelopes. Thus there might
be similarities between the trained DNN and the heuristic
models using modulation filter banks (Jepsen et al., 2008).
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4.6.4 Smearing of the internal representation?

In (Zeng et al., 1999), it’s discussed whether gap detection
deficits in subjects with neuropathy can be explained by
a simple smearing model. The model proposed by Zeng
et al. (1999) is equivalent to convolving a window across the
envelope of the stimuli. To test this strategy we employed
the NM with a moving average window of 30ms. The
only thing changed in the NM model was the window
length. However, the GDTs remained largely unchanged.
The model didn’t show substantial change of threshold for
the CS conditions, leaving the conclusions of the validity
of the NM unchanged. Thus, the window model suggested
by Zeng et al. (1999) seem inadequate for explaining the
elevated threshold.

4.6.5 Training data

For training we used both BBN and babble-noise in a non-
even distribution between the two noise sources. The BBN
included selectively lower gap lengths as a result from the
logarithmic mapping (eq. (17)), resulting in 84% of the gaps
having a duration below 25ms. In contrast, the babble noise
dataset had approx. 25% gaps of duration below 25ms due
to the uniformly sampling of gap lengths. When including
the BBN in the training set, the GDT lowered, for all the
test conditions. This could partially be by the added loss for
lower thresholds, forcing the model to improve for lower
gap lengths. In the initial trials, the models trained for BBN
only showed a poorer ability to detect gaps with lengths
above the seen 50ms. This led to the use of both a uniformly
distributed selection of gap lengths in the babble noise and
to include the longer range of gap lengths from 0 to 100ms.

The resemblance between the training and test data
when including the BBN training data, may also be a
contributing factor to the improved performance, being that
the BBN used for the training set and test set shared the
exact same parameters for bandwidth and ramping.

The selected DNN models for the results in fig. 6 had
a bias towards classifying the input as ”gap” for the lower
presentation levels. For 20 dBSPL, the mean output of the
model to the NH no-gap samples was above 0.5, similarly
to the mean output for the longest gap length. Similar to
the analysis of model performance as a function of training
iterations section A.3, we analysed the bias at 20 dBSPL,
but found no trend across training. Notably, the mean of the
outputs didn’t go below 0.5.

Even though the effort to create a balanced training set,
we found after generating the results presented that the
BBN dataset had an imbalance in count of gap and no-gap
samples. The simulations for BBN at dBSPL didn’t include
the no-gap samples, thus 300 no gap samples was missing
from the total training dataset size of 54 300, i.e. the total
number should have been 54 600. In term of number of
samples, the error is non-significant, however, we deem the
imbalance to as the main cause for the observed bias.

The BBN training set was only simulated for 20 to
70 dBSPL. Not visible from the plotted range in fig. 6, the
computed thresholds had a tendency to increase for test
levels higher than 70 dBSPL. A similar trend was observed
for the CS simulations, but starting at a slightly lower
presentation level and not always as profound. The trend is

visible in fig. 9 for the tested channel factors. Furthermore,
this effect is increasingly visible as the number of channels
is reduced for the DNN model. Inspecting the weights of
the first convolutional layer doesn’t however show a clear
tendency towards filters matched for certain levels, as the
change in neural activity isn’t linear, such a selectivity in
bias and weights of the convolutional layer may also not be
linear and hard to identify without knowing how the output
of the first layer is processed in the later layers.

Three factors might therefore contribute to the DNN
model ability to obtain low thresholds for all presentation
levels far beyond hearing threshold, i.e. above 40 dBSPL;
the presentation levels in the training dataset and the num-
ber of channels in the model. The third factor would be the
effect also seen in human data.

4.6.6 Reference studies
We only evaluated the gap detection thresholds along one
parameter, sound intensity. However, gap detection has
been evaluated for a number of parameters as described
in section B. To further strengthen the argument for the
proposed model framework and the use of gap detection for
assessing AN health, the results would benefit from adding
human data evaluating GDT over other parameters than
level.

Previous studies on gap detection saw a large effect
of frequency on GDT (Shailer and Moore, 1983; Florentine
et al., 1999). The evaluation of the model would benefit from
including simulations of such studies to investigate the gen-
eralisation of the model behaviour. However, the reduced
GDT for OHC dysfunction indicates that such behaviour
frequency dependent behaviour is likely tied to the effect of
the OHCs on the BM. Though, it doesn’t hint at how the
model would behave for narrow-band carriers.

Another parameter is carrier duration, thus using the
study from Schneider and Hamstra (1999) as a reference.
In the study, the GDTs two groups based on age was
measured using gap carrier durations from 0.5 to 500ms. At
long durations, the two groups obtained similar GDT, but
diverged as the duration was shortened, with the elderly
group showing higher GDTs. As with the other studies
on gap detection, the elderly or hearing impaired group
showed larger variance. Adding this study would therefor
benefit in two ways, firstly the model behaviour to shorter
gap carriers is evaluated displaying whether the model
generalises for other aspects of the same task, secondly,
it would be enlightened whether the increased GDTs for
shorter carrier durations is caused by age alone.

4.7 Model limitations and future directions

Deep learning as a tool for estimating perceptual models
directly on detailed simulations of the AN have proven
capable of reaching human-like performance. The present
study supports this. While classic model observer and ideal
observer approaches are limited by the simplification of
the auditory periphery and the information integration, the
deep learning approach introduces similar limits. The DNN
model are limited by the task it’s trained for and the data
it’s trained on. The implications of these limits might be
concealed by the nature of deep learning models.
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The present problem of defining a model capable of
explaining human data in different behavioural tasks can
be further developed in two directions.

One direction is to extend on the same approach used by
Saddler et al. (2021); Francl and McDermott (2022), by shar-
ing the learned weights across domains. This could be done
by either using transfer learning or defining the models for
multi-task learning. Transfer learning could enlighten what
cues or mechanisms might be shared across behavioural
tasks, e.g. by evaluating how the model would perform if
only the last linear layers was retrained for the new task.
Multi-task learning cold similarly show which features are
shared by forcing the model to learn feature extractions that
are optimal for both domains.

Another approach would be to tackle the problem from
another angle. One aspect of the present study was to
develop a model capable of evaluating behavioural tasks
before performing the test on humans. The approach in the
present paper relies on defining a new task with a similar
output label, i.e. within the same domain. This limitation
could be circumvented by training a model not limited by
task but by procedure. Instead of outputting the probability
of a certain pitch or gap and only present one stimulus at
the time, the model could take n presentations and simply
reply which of the n presentations was different. This would
allow the model to generalise across behavioural tasks for
different domains and thus only be constrained by the
ability to define a domain specific measure as a n-AFC task.

Given that an above framework would function, this
also opens the possibility of modelling how various rehabil-
itation strategies affect the performance in the behavioural
tasks. A step further from finding a behavioural test suitable
for detecting CS, is the need to find an effective strategy to
reduce the impairing effects of the condition. As it’s straight-
forward to apply digital sound processing to the stimuli
before simulating the AN, the effect of various hearing aid
processing strategies on various behavioural tests could be
investigated.

5 CONCLUSION

The goal of this study was to both develop a general mod-
elling framework for evaluating behavioural tests poten-
tially sensitive to CS and specifically evaluate gap detection
within this framework.

We showed that a model trained on natural babble noise
was able to resemble the tendency of GDTs in NH human
data showed sensitivity to CS reflected by elevated GDTs.
Furthermore, we saw from simulating CS, IHC- and OHC
dysfunction that CS was the primary contributor to elevated
GDTs, IHC dysfunction seemed to contribute as well, while
OHC dysfunction showed a direct opposite effect by lower-
ing the GDTs.

Future work on extending the gap detection test ref-
erences for the present model could serve to further
strengthen the argument for using gap detection as a possi-
ble clinical test for assessing IHC function and CS.
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ACRONYMS
ABR auditory brainstem responses. 1
AFC alternative forced choice. 4, 7, 12, 16
AM amplitude modulation. 2
AN auditory nerve. 1–4, 7–12, 16

BBN broadband-noise. 1, 6, 8, 9, 11, 16
BM basilar membrane. 9, 11

CF characteristic frequency. 3–7, 9
CNN convolution neural network. 2, 10
CS cochlear synaptopathy. 1–3, 5, 7–12, 15–17

DNN deep neural network. 1–12, 15–17
DPOAE distortion product otoacoustic emission. 1
DTU Technical University of Denmark. 12

EFR envelope following responses. 1

GDT gap detection threshold. 1, 2, 4, 5, 7–12, 15–17

HHL hidden hearing loss. 1, 2
HPC high performance computing. 12
HSR high SR. 3, 4

IHC inner hair cell. 1–3, 7–10, 12

LSR low SR. 3, 4

MSR medium SR. 3, 4

NH normal hearing. 1, 3, 7–12, 15–17
NM neurometric. 4, 7–9, 11
NP neuropathy. 3, 7–10, 15, 17

OHC outer hair cell. 1, 3, 7–12

PSTH peri-stimulus time histogram. 4
PTA pure-tone average threshold. 7, 9, 10

ReLU rectified linear unit. 5, 6
RGB red, green and blue. 4
RIFF Resource Interchange File Format. 2
RMS root mean square. 2, 6

SE standard error. 8
SL sensation level. 7–10
SPL sound pressure level. 3, 6, 7, 9, 11, 16, 17
SR spontaneous rate. 3, 13
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APPENDIX A
HYPER PARAMETERS

The DNN model architecture used for the results in the main paper are
a product of a series of exploratory experiments. These experiments are
described in this appendix along with other additional considerations
not included in section 2.3.

A.1 Model size
A common saying in general modelling, is the simpler the better. The
models used by the papers performing similar studies to the present
study used relatively large models (Saddler et al., 2021; Francl and
McDermott, 2022). A smaller model is more efficient and faster to both
train and evaluate, however reducing the size of a model might reduce
it’s ability to learn complex properties of the given data. Therefore, the
following experiments was conducted. 1. We varied the shape of the
kernels to from quadratic, to be longer in the temporal domain and in
size generally. 2. we evaluated the effect of the number of channels, i.e.
number of kernels per convolution block. 3. we halved the number of
linear neurons in the hidden linear layer.

All the model comparisons was based on the simulated gap thresh-
old for normal hearing, as well as the sensitivity to CS, in terms of
resemblance with the NH and NP groups from (Zeng et al., 2005).

Block 1 Block 2 Block 3 Block 4 Block 5

L3

Kernel [1, 16] [1, 12] [1, 8] [1, 4] [1, 4]
Stride [1, 3] [1, 2] [1, 1] [1, 1] [1, 1]
P.Kernel [1, 3] [1, 3] [1, 3] [1, 3] [1, 3]
P.Stride [2, 2] [2, 2] [2, 2] [2, 2] [2, 2]

L4

Kernel [5, 5] [3, 3] [3, 3] [3, 3] [3, 3]
Stride [2, 2] [1, 1] [1, 1] [1, 1] [1, 1]
P.Kernel [3, 3] [3, 3] [3, 3] [3, 3] [3, 3]
P.Stride [2, 2] [2, 2] [2, 2] [2, 2] [2, 2]

L5

Kernel [1, 5] [1, 3] [1, 3] [1, 3] [1, 3]
Stride [1, 2] [1, 1] [1, 1] [1, 1] [1, 1]
P.Kernel [1, 3] [1, 3] [1, 3] [1, 3] [1, 3]
P.Stride [2, 2] [2, 2] [2, 2] [2, 2] [2, 2]

L6

Kernel [5, 16] [3, 12] [3, 8] [3, 4] [3,4]
Stride [2, 3] [1, 2] [1, 1] [1, 1] [1, 1]
P.Kernel [3, 3] [3, 3] [3, 3] [3, 3] [3, 3]
P.Stride [2, 2] [2, 2] [2, 2] [2, 2] [2, 2]

TABLE 1
The kernel size and stride for each evaluated model in section A.1.1.

P.Kernel and P.Stride is short for pooling kernel size and stride,
respectively.

A.1.1 Kernel shape
We tested 4 kernel shapes with fixed but different strides. The sets of
layer parameters is seen in table 1. We tested 4 training initialisations
and evaluated the models by their mean thresholds, their inter-model
variance, resemble to human NH GDTs and their sensitivity to CS for
each set of model parameters.

The initial model tested, was ”L4”, which uses the same kernel sizes
and strides as used in (Haro et al., 2020). However, this model quickly
obtained better-than-human thresholds in the simulated NH condition,
while it little-to-none increase in threshold for the CS conditions. This
led to removing the spectral dimension of the kernels, i.e. use model
”L5”. However, this model was unable to obtain close-to-human perfor-
mance, and showed large inter-model variance for the CS conditions.
This led to expanding the temporal filters in size, i.e. model ”L3”. This
yielded good results and was kept as preferred model structure. To test
whether this was an effect of increased temporal kernel length, we also
tested ”L6”, which is a combination of ”L3” with the spectral sizes from
”L4”.

The models with spectral kernels was much less sensitive to CS
than the models using temporal-only kernels. To exemplify, the L4
model quickly obtained better-than-human performance in terms of
GDT for the NH condition.

Based on these findings, the ”L3” model parameters was elected
throughout the study.
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A.1.2 Channel factor
We evaluated channel factors 4, 8, 16 and 32 in terms of the minimum
GDT across presentation level. The GDT for each presentation level
in the range of 20 to 80dBSPL is shown for each channel factor and
grade of CS in fig. 9. The annotations mark the minimum GDT of the
combined model ensemble for each model and impairment condition,
respectively. We can visually see that the models with C = 16 perform
equally good as the C = 8 models for the NH condition, but are more
sensitive to CS. Our goal is to select a model that performs as good
as the NH human group, but it also sensitive to CS. A third measure
taken into account was the resemblance with the human data. From
the current comparison, a channel factor of C = 32 was most alike
the human data in terms of stable change of GDT across level. The
minimum GDT for the NH condition and CS seemed reasonable within
what was achieved by the other channel factors.

A.1.3 Size of hidden layer
We tested a model further reduced by size with half the neurons (256) in
the fully connected layer following the convolution blocks. However,
the model showed larger fluctuation across level and slightly higher
GDTs compared to the larger model with 512 neurons. Based on this
subtle comparison, we chose the larger model.

A.2 Training data
We considered the effect of the generated datasets by training models
on the BBN training data and all of the babble-noise conditions,
respectively. To analyse how each dataset generalised to the BBN task,
we evaluated the training loss along with the validation loss, which
we obtained by testing the model on a separate BBN test set. This
validation set was not part of the data sets used for obtaining the gap
thresholds shown in section 3, but was similar with gap position in the
centre of the carrier. All datasets was evaluated by training 4 models
for each, with the same hyper-parameters as used in the main study.

Checking the training loss and validation loss for each of the
individual training sets, we didn’t see a big change in training loss
decay rate among the babble-noise training datasets. Neither did the
validation loss substantially differ among those 6 datasets, which after
200 training iterations all reached around 3 in value. Most notably was
the 5-talker babble-noise data set, were the validation loss increased
slower than the other data set, until about 50 training iterations.
However, after 50 training iterations, the validation loss was similar
to the other n-talker babble noise sets. The training loss was similar for
all of the babble noise datasets.

A different result was obtained from the BBN dataset. For the first
10 training iterations, the validation loss was below the training loss,
indicating the test set to be ”easier” for the model while training. After
10 training iterations, it started to increase, following a log-like function.
The validation loss after 200 training iterations averaged to 0.5, thus
substantially better than for any of the babble-noise data sets alone.

In overall conclusion, using a subset of the complete training
dataset, the DNN model seem to overfit after about 50 training iter-
ations. It should however be considered that the evaluated subsets are
vastly smaller in size, compared to the full dataset.

A.3 Training iterations
Leading from the above experiment, we wanted to observed the be-
haviour of the model in terms of GDT and sentivity to CS as a function
of training iteration.

To see whether an effect could be observed during training, we
saved a checkpoint for every 20 training iterations over the course of
400 complete iterations. Then, the GDT for the different degrees of CS
with NH audiogram was obtained for the DNN model weights at each
checkpoint. This was done for 4 individual model initialisations at a
presentation level of 40dBSPL. The average GDT is depicted in the
upper panel of fig. 10. We also wanted to test the change in GDT due
to CS, i.e. the sensitivity to CS as a function of training iteration. This
is shown in the lower panel of fig. 10. The difference was computed
simply by

∆GDT(c) = GDT(c)− GDT(NH) , (19)

where c is the given simulation condition.
We observed that the lowest GDT for the NH condition without CS

was for the checkpoint at 40 data iterations. Furthermore, this showed
the locally highest sensitivity to CS. Based on this result, we chose this
training length as the optimal selection, thus the DNN model weights
after 40 data iterations was used in section 3.

A.4 Effect of fibre type discrimination
We also tested the effect of having each fibre type as a designated
input channel, (see eq. (1)). However, in the implementation of the
convolutional layers, we didn’t use depth-wise convolution, thus all
inputs was convolved then summed for each output channel without
training kernels specific for one channel or with weights specifically for
the combination of the grouped kernels. The DNN model architecture
is only changed in the first convolutional layer, where two channels,
i.e. two additional sets of kernels are added. When comparing the
model performance, both in terms of the rate of decay of the training
loss and the obtained GDTs for both NH and the simulated grades of
CS we found no substantial difference. We therefore decided to not
investigate this parameter further. It’s an open question on whether
the AN-fibres are routed to fibre-type specific processing centres of
the brain, and the role of the different fibre types is not completely
understood. The PyTorch library includes the possibility of handling
”groups”, in their implementation of convolutional layers, which is
equivalent to designing parallel layers side-by-side for each group. By
using n groups, the only constraint is that the number of kernels must
be a multiple of n.

A.5 Threshold computation
We evaluated three methods for inferring a gap threshold for the
trained DNN model (see section 2.2). All involved fitting a psychome-
tric function to either the direct output of the model, or the percentage
of correct hits with a fixed or ideal decision criterion.

Using the model-output method generally resulted in higher GDTs.
Percentage-correct with the fixed threshold at 0.5 generally lowered the
threshold, while percentage-correct with an estimated ideal decision
criterion (eq. (5)) resulted in the lowest threshold. It seems unclear to
which of the methods are most naturalistic, and given that we don’t no
the correlation between the DNN model activations and the actually
”implementation” in the auditory brain stem, the basis for comparison
is vague. However, the model-output method showed a curvature for
the NH case that resembled the human results from (Zeng et al., 2005)
better. However, when the mean DNN model output doesn’t change
substantially across gap length, the fitting of the psychometric function
breaks and thus for lower levels, we found GDTs jumping from 2 to
35ms for presentation levels at 20dBSPL and 25dBSPL. A similar
behaviour was observed for the percentage correct method using a
fixed decision criterion. As described earlier, the DNN models obtained
a bias towards ”gap” for the lower presentation levels, thus the model
would get 100% hits for all samples with a gap at that level, but also
100% false alarms for the no-gap samples.

The first two methods apply no knowledge of the models response
to the other samples, which resembles a yes/no procedure, where
the answer of the subject is based on one view of the stimulus, with
no direct base of comparison. The third method is more comparable
to a n-AFC procedure, as the DNN model output is used as the
basis for setting an optimal decision criterion. During an n-AFC, the
subject is usually presented with gap lengths that are much longer than
the expected threshold. This enables the subject to learn the internal
response given a gap and no-gap.

Based on the above findings, we used the intersection of the
psychometric functions fitted to percentage correct using an estimated
ideal decision criterion throughout the results presented in the main
paper.

APPENDIX B
GAP DETECTION
The following section acts as a micro review on gap detection, carried
out as part of the present study. Gap detection has generally been used
as a mean of investigating the temporal acuity of the auditory system in
various species. Various potential conditions of the auditory periphery
that might affect gap detection thresholds has been evaluated. This
includes effects of ageing (Schneider et al., 1994; Schneider and Ham-
stra, 1999; Trehub et al., 1995; Snell, 1997; He et al., 1999; Walton, 2010)
and hearing impairment (Fitzgibbons and Wightman, 1982; Irwin et al.,
1981; Moore and Glasberg, 1988; Moore et al., 1992; Zeng et al., 2005).
Gap detection has furthermore been carried out with different carrier
characteristics.

In general the stimuli used in the gap detection studies included
in this study were varied along four dimensions; 1. the intensity of
the markers, 2. the duration of the markers, 3. spectral width of the
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Fig. 9. Each GDT curve depicts the mean of 4 individually trained models for each of the four values of C. The curves are plotted from 20 to
80dBSPL in steps of 5dBSPL and for each grade of simulated CS, illustrated by the colour of the filling in the markers. The dotted annotations
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Fig. 10. Obtained GDT (upper panel) and GDT-difference for each
training checkpoint averaged for 4 DNN models presented at 40dBSPL.
The GDT-difference is condition coloured as the above panel subtracted
by the simulated NH GDT.

stimulus, ranging from pure-tones to broadband noise, 4. frequency
range or centre frequency.

Usually, the gap detection thresholds are evaluated over one or
more experiment parameters, specific for the given study. For instance,
studies have estimated the effect of varying the centre frequency of the
carrier (Fitzgibbons and Wightman, 1982; Formby and Forrest, 1991;
Moore et al., 1992; Florentine et al., 1999), the carrier intensity (Irwin
et al., 1981; Schneider et al., 1994; Zeng et al., 1999, 2005) and carrier
duration (Schneider and Hamstra, 1999).

We decided for the present study to focus on simulating the gap
detection setup used in Zeng et al. (2005), based on the simple stimuli
and large difference between the groups and with the NP having the
largest probability of being affected by the CS.

APPENDIX C
BABBLE NOISE
For the training a data, a collection of babble noise was created.
Synthetic babble noise already exists within the ICRA noise dataset
(Dreschler et al., 2001). However, the noise is modulated as a 3-band
vocoder and thus it doesn’t sound that natural. Therefore, the decision
was made to create a babble noise data set, using the HCHR Map Task

Corpus (Anderson et al., 1991) for generating babble noise of various
count of speakers. The corpus contains two-person dialogues of one
person primarily speaking at the time (their might be brief periods
where the two speakers overlap). In the recordings, two participants
takes turn on calmly describing some path along a map.

Six samples of babble noise was created for 3, 4, 5, 6, 7 and
8 speakers, respectively. Thus, as an example, the 3-speaker babble
noise contained 3-different recordings of the HCHR Map Task corpus.
The recordings were added together raw, meaning that no additional
processing was applied. The recordings from the corpus were of dif-
ferent length, thus the recordings was truncated by the shortest one
included, ensuring that one of the speech recordings wouldn’t include
a lesser count of speakers towards the end of the mixed babble noise.

The speech sequences used for mixing the babble noise was ran-
domly selected among the available recordings in the source corpus.
The final mixed babble noises had a duration of between 3- and 4
minutes long, respectively.

C.1 Gap detection preparation
The babble noise dataset was used for training the deep learning
models, simulating the internal decision variable following the auditory
nerve, used for determining whether a gap was present or not. The
babble noise clips of length N was sampled randomly (using a uniform
distribution over the range 0 to N − K, with K being the number of
samples in the sub-sampled clip. For each sample, a gap and no-gap
version where created.

The gap condition was created by sampling gap length and gap
position uniformly across samples. The gap position was sampled from
100ms after stimuli onset to 100ms before the offset. Similarly was the
gap length sampled in the range 0.5 to 100ms. For each number of
speakers in the babble, 400 samples was cut, resulting in 800 stimuli.
With 6 speaker conditions, this resulted in 2400 samples with gaps and
2400 samples without. Creating a total of 4800 unique sound files. To
visually inspect the range of gap position and duration, see fig. 11.

The sampled gap durations and positions are indeed uniformly
distributed within the defined range, fig. 12 shows histograms of all du-
rations and positions sampled for all n-talker conditions, respectively.
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