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Abstract
In the design of offshore wind power plants (OWPP), the electrical connection of the wind
turbines generators (WTG) to power substations through submarine cables comprise the
collector system layout. This layout is subject to a limit on the number of WTG connected
to each substation circuit (due tomaximum cable capacity) and to the interdiction of cable
crossings. The optimization’s objective function is investment cost, but the total cable
length is used as a proxy for that target, while the design variable is the topology of the
circuit (WTGs and substation positions are given).

Thewell-described problemwithin graph theory called the capacitadedminimumspan-
ning tree (CMST) pursues the interconnection described above while abiding by the cable
capacity. In order for a CMST to be a feasible solution for OWPP, it must be further con-
strained to prevent cable intersections. The CMST has been proven to be NP-hard, which
implies that the computational cost to get the optimal solution grows exponentially with
the number of OWPP. For this reason, heuristics that reach feasible, though sub-optimal,
solutions are an important tool for integrating the collection system in ampler OWPP op-
timization efforts that combine many disciplines in a single objective function.

Thiswork proposes some extensions to theEsau-Williams (EW)heuristic for theCMST
problem with non-crossing constraint. The Crossing Preventing EW (CPEW) introduces
Delaunay triangulation to efficiently avoid cable intersection with negligible impact on
solution quality. The Obstacle Bypassing EW (OBEW) improves solution quality by ex-
panding the graph with detour nodes that enable more subtrees to reach full capacity and
lays the foundation for avoiding forbidden areas. Finally, a change of EW’s savings calcu-
lation formula with a rootlust bonus promotes solutions with a structure more similar to
that produced by exact solvers, further reducing the gap from the heuristic layout to the
optimal one.

The algorithms are applied to a working set of 11 OWPP – 7 actually built ones, 2
proposed and 2 synthetic – with sizes ranging from 27 to 243 WTG. Cable capacities were
varied from 2 to 15 WTG. The implemented heuristics reach feasible layouts for all the
pairs OWPP-capacity. Compared with a naive introduction of non-crossing constraints to
EW, the proposed algorithms achieved, on average, 1.9% reduction in total length. Global
optima for these instances were procured by solving a mixed integer linear programming
model (MILP) – by others—with guaranteed optimality gap of 1%. For comparison, these
optima are, on average, 4.4% shorter in total length than the naive EW approach.

Algorithm complexity is shown to be polynomial, with𝑂(𝑁2) for CPEW and𝑂(𝑁3) for
OBEW. This, along with the modest gap of around 3% to the global optimum make these
heuristics suitable for use within integrated OWPP optimization efforts.
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CHAPTER1
Introduction

Wind power is a key resource for the transition to a low-carbon or carbon neutral pri-
mary energy matrix. Total generating capacity has been steadily growing and much more
growth is expected in order to comply with emission reduction targets in the next decades.

Within wind power, the offshore wind power plants (OWPP) offer access to wind re-
sources superior to most onshore sites. On the energy production side, the winds in the
ocean are often stronger and more consistent than on land, while on the project devel-
opment side, the number of stakeholders affected by an offshore development tend to be
smaller than onshore, specially in densely populated countries. Moreover, the transporta-
tion of very long blades to the turbine sites are much less challenging on the ocean than
for most land locations. In spite of these advantages, the cost of an offshore installation is
still significantly higher than an onshore one and this is the main factor holding off that
sector’s growth.

In an OWPP, the collection system comprises the electrical connection of the wind
turbines generators to power substations through submarine cables (also called inter-array
cables). These circuits enable the energy produced by the wind turbine generators (WTG)
to flow to offshore substations (OSS) that will send the aggregated energy of several WTGs
further towards the point of connection (PoC) to the grid. This subsystem can represent
around 10% of the total investment cost of a new plant.

Designing this interconnection layout would be a trivial task were not for some techni-
cal constraints that must be complied to. The ones that will be considered in the present
work are the cable power limit (capacity constraint) and the impracticality of the intersec-
tion of two submarine cables (non-crossing constraint).

An OWPP design involves several different subsystems that fall in the scope of distinct
disciplines. Most of them have many design variables to explore and this drives optimiza-
tion efforts towards improving the economic case for the building of the OWPP. However,
since the subsystems affect one another, the optimal design for one might restrict the de-
sign space of the other to a sub-optimal region. Therefore, only an integrated optimization
approach may reach the best compromise between subsystems whose optimization pulls
a design variable in opposite directions.

The goal of this work is to provide optimization heuristics for the integration of the de-
sign of the collector system layout in a multidisciplinary OWPP optimization framework.
The heuristics should aim for solutions that approach the global optimum, but must exe-
cute fast enough to provide hundreds of optimal layouts per iteration of the entire OWPP
optimization process. Their execution time should also grow at a manageable rate with
the increase in problem size. The quality of the heuristics’ results will be compared to best
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Table 1.1: OWPP sites used for the heuristics’ benchmarks.

Handle Name # of
WTG

# of
OSS

Total
power

Operator

thanet Thanet 100 1 300 MW Vattenfall
dantysk DanTysk 80 1 288 MW Vattenfall and

SWM
horns Horns Rev 1 80 1 160 MW Ørsted
anholt Anholt 111 1 400 MW Ørsted
sands West of Duddon Sands 108 1 389 MW Ørsted
ormonde Ormonde 30 1 150 MW Vattenfall
london London Array 175 2 630 MW Ørsted and RWE

Renewables
rbn Ronne Bank North 27 1 (proposed) Baltic InteGrid
rbs Ronne Bank South 53 1 (proposed) Baltic InteGrid
tess Triangular tesselation 114 1 (synthetic)
tess3 Triangular tesselation –

3 OSS
243 3 (synthetic)

estimates of the exact optimal solution.
The next chapter – Chapter 2 – builds up the context for the optimization of the col-

lection system and reviews the literature on the subject. The optimization problem is
formulated and the classic Esau-Williams heuristic is introduced.

Chapter 3 presents the algorithms developed to provide good but sub-optimal solutions
to the optimization problem. The steps taken to improve upon Esau-Williams’s heuristic
are described and exemplified with layouts for real OWPPs. The quality of the proposed
solutions is compared with globally optimal layouts obtained with a mixed-integer linear
programming technique.

Chapter 4 reports the complexity analysis and empirical runtimemeasurements of the
developed heuristics.

Chapter 5 wraps up the report with a summary of the outcomes obtained and suggests
future research possibilities.

The OWPP sites used in this work are listed in Table 1.1 (KIS-ORCA, 2022). The loca-
tions of their wind turbine generators (WTG) and offshore substations (OSS) are depicted
in Figure A.1.



CHAPTER2
The problem

This chapter describes what the optimization effort is about, explains why heuristic meth-
ods are an useful tool, formally states the optimization problem and presents the classic
algorithm of Esau-Williams, on which the heuristics presented in this work are based. In
the end, previous work on the optimization of the collection system is reviewed.

2.1 Collection system layout
optimization

Developing a new OWPP is an investment decision: a project’s prospect of becoming an
actual plant is linked to its economical attractiveness. Return on investment (ROI), inter-
nal rate of return (IIR) or levelized cost of energy (LCoE) are typical figures of merit for
quantifying the likelihood of a good payoff for investors. Hence, the most common objec-
tives of OWPP optimization are the improvement of those metrics (higher ROI and IIR,
lower LCoE).

The collection system enters these calculations as a cost. It’s relevance is greater in
the investment costs (capital expenditures – CapEx), but it also influences operating costs
(OpEx) through transmission losses and reliability issues. This work examines only the
investment cost, which includes both acquisition and installation of the cables, which are
together responsible for around 10% of the LCoE for an OWPP (BVG Associates, 2019).

The typical inputs to the collection system optimization are: the set of positions of
WTGs and OSS to be interconnected; the power ratings of the generators; the available
cable types with their respective power ratings; themaximumnumber of circuits the OSSs
can handle; and the maximum number of connections a WTG can have. The output is a
layout (the connections diagram and the cable types used) and its associated cost.

Regarding the interplay of collection system optimization and the entire OWPP opti-
mization, there are two main approaches used: the sequential and the integrated. The
first defines the quantity and positions of the WTGs in a previous step not considering ca-
bling costs (or using some rough estimate) and then optimizes the cabling layout (possibly
also the OSS positions). The second integrates the collection system optimization within
the global OWPP iterations, allowing the former to influence the latter with respect to the
WTG positions.
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In a OWPP cash flow forecast, the revenue will be a function of energy delivered to the
grid, typically summarized by the annual energy production (AEP) figure. This number
is strongly affected by the relative positions among the WTGs, since they are subjected to
wake losses from the generators up-wind from them. For this reason, AEP maximization
tends to spread wind turbines apart, which, in turn, increases the length of collection ca-
bles required. It is possible that an AEP improvement, achieved by moving WTGs further
from each other, might result in a decrease in IRR due to the additional cabling expenses.

As discussed in (Perez-Moreno et al., 2018) and in (Pérez-Rúa & Cutululis, 2022), the
different disciplines that contribute to an OWPP design are frequently considered one at
time in a sequence of narrow-domain optimizations. The first in the line tries to maxi-
mize AEP (the revenue source) with the quantity, placement and properties of the WTGs
as its design variables. Next is the optimization of the support structures (e.g. monopiles),
which is much more constrained in the choice of WTG placement. Lastly, the collection
system optimization starts from the pre-defined positions and outputs the cable layout
with minimal cost. Even if this sequential approachmay be iterated a few times, the afore-
mentioned works show that better economic figures for the OWPP can be obtained with
an integrated approach, i.e. an optimization process that uses a single objective function
encompassing the contribution of all the disciplines.

2.2 Graph representation
Every WTG in a OWPP must have an electrical path via cables to an OSS to deliver the
energy it produces. In the ocean environment, the splicing of cables or introduction of
junction boxes in sites where there are no WTG are ruled out because they add too much
cost compared to the cable length they would save, therefore these electrical connections
in the ocean are point-to-point between WTGs or WTG and OSS. The process of defining
which connections tomake, which cables to use for each of them and the path alongwhich
to lay those cables is called the collection system design. A set of values for these design
choices will be called a layout or solution.

The electrical circuit formed by the interconnection ofWTGs and an OSS can be repre-
sented by the graphmathematical structure. It is assumed that the reader is familiar with
basic graph terminology and concepts such as vertex, node, edge, arc, leaf, path, loop,
neighbor, component and reachability. The circuit will be represented by an undirected
graph 𝐺 = (𝑉, 𝐸), which has WTGs and the OSS as its vertices 𝑉 and the cables between
any two vertices as its edges 𝐸 = {{𝑖, 𝑗}} ∶ 𝑖, 𝑗 ∈ 𝑉 ∧ 𝑖 ≠ 𝑗. An edge is simply defined as the
pair of vertices at the ends of the cable segment. This model of the electrical circuit does
not capture the entire scope of collection system design decisions, but it will be enough
for the problem at hand, considering the simplifications that will be explained in the next
few sections.

A graph that has no loops is is said to be a tree. If, in addition, all vertices are reachable
from all other vertices, the graph is said to be a spanning tree. A spanning tree over the
vertices of a OWPP accomplishes the goal of making all the WTG reachable from the OSS
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without any redundant connections, therefore containing a spanning tree is a minimum
requirement for a graph to be considered a collection system layout for the OWPP. In this
context, it is also useful to define the OSS node as the graph’s root node.

These are some additional terms that will be used throughout this report:

• root node: represents the OSS (also called central or sink nodes in the literature);

• node: represents the WTG (also called terminals in the literature);

• gate edge: any edge containing the root node;

• subtree: the set of nodes that need a particular gate edge to reach the root node;

• detour node: auxiliary nodes added at the same position as WTG nodes for the pur-
pose of crossing avoidance;

2.3 Alternate topologies
A tree is not the only shape the collection systemmay take. It may use circuits that consist
each of a single loop or it may be a network, with several embedded loops within. Loops
introduce redundancy, whichmakes a layoutmore expensive than the non-redundant one,
but alsomore resilient to failures. There can be an economic argument for including loops
in a layout, but reliability analysis is out of the scope of this work.

Even not considering loops and networks, a tree may still have three different topolo-
gies: the star, the radial and the branched. The star is a very simple layout where all WTG
nodes have a direct connection to the OSS node. In the radial topology, each WTG has, at
most, two connections, such that every edge leaving the root node form a linear string of
WTGs. The branched topology is the more general tree topology, where each WTG may
connect to more than two other. Figure 2.1 shows a collection system layout with branch-
ing and non-branching circuits. The layouts generated in this work are of the branched
type, as the savings in cable length enabled by branching frequently compensate the more
expensive switchgears required on branched connections. Even though branching is al-
lowed, the fraction of WTG nodes with branches in the solutions is very small and many
of the subtrees where they occur could be turned into linear strings without increasing the
cable length.

2.4 The Capacitated Minimum
Spanning Tree – CMST

The collection system layout is subject to some constraints, among which there are: the
maximum power that the cable can carry (limiting the number of WTGs on each circuit
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branching

Figure 2.1: An OWPP layout with branching circuits (marked) and radial circuits (not
marked).

leaving the substation); the impracticality of cable crossings; and the avoidance of some
seabed areas inadequate for laying cables (forbidden areas).

It has been already established in section 2.2 that a spanning tree accomplishes the
necessary interconnection of WTGs and OSS and, in section 2.3, that the solutions will
be of the branched tree type. If the cable maximum capacity limit is now introduced,
the resulting optimization problem becomes the Capacitated Minimum Spanning Tree
(CMST). This problem has been well described in combinatorial optimization literature
and many exact and heuristic methods have been proposed for its solution.

The CMST, in the classic formulation, does not include the non-crossing or forbidden
area constraints nor the use of multiple cable capacities. This last feature can be adapted
to to the CMST problem as an additional step of cable assignment after a solution is ob-
tained using only the maximum capacity cable. The algorithms developed in this work
use that simplifying approach, which means that the minimization of the total length of
the collection system is equivalent to minimizing its cost (length is used as a proxy for
cost).

After a reaching a layout, over-sized connection can have their cable type changed to
the cheapest one that can handle the actual demand, which is a trivial post-processing
task – this procedure is presented as Algorithm 2 in (Peréz-Rúa et al., 2019). This two-step
approach to cable type assignmentmay forgo some optimization opportunities (depending
on the cables relative capacity and cost), but that greatly simplifies the calculation of the
cost of each connection between vertices within the heuristic. The integration of cable
types into the heuristic is suggested as a future improvement or the algorithm.

Both WTG and the electrical cables used to connect them to the OSS have power rat-
ings that specify the maximum the former can produce and the latter can carry. Leaving
charging currents aside (given the collection system is typically in medium voltage and
the distances within a few tens of kilometers) and considering OWPP commonly use only
one WTG model, the cable capacity can be treated as the maximum integer number of
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WTG whose aggregated power a single segment of the cable can carry. In this work, the
the capacity 𝜅 represents the integer part of the quotient of the ratio of cable nominal ca-
pacity to WTG nominal power, i.e. ⌊𝑃

max
𝑐𝑎𝑏𝑙𝑒

𝑃max𝑊𝑇𝐺
⌋. This calculation uses the cable type with the

highest capacity and assumes all WTGs are of the same power rating.
The exact solution to CMST optimization has been shown to be NP-hard (Papadim-

itriou, 1978), which means the necessary computations grow exponentially with the size
of the problem. Thismakes finding the globalminimum for OWPP only practical for a lim-
ited size range. Even in this limited range, an exact optimization for OWPPs with more
than 50 WTG will require from minutes to hours to obtain a solution close (e.g. within
1%) to the optimum.

The alternative to the costly exact solutions is the use of heuristics andmeta-heuristics.
These are methods to obtain feasible layouts that are usually “good enough” in terms of
total cost but whose distance to the global optimum is unknown.

In order to run one or more collection system optimization solution per iteration of an
integrated optimization loop, it is fundamental to have a fast model for the collector sys-
tem cost as the different turbine placements are assessed. Meta-heuristics, although faster
than exact methods, are still a few orders of magnitude slower than heuristics. Besides,
any improvements attained in heuristics, are easily transferrable to the meta-heuristics
that use them; those gains can even benefit exact methods, by means of providing warm-
start solutions for branch-and-cut solvers. Therefore, this work focuses only on the devel-
opment of heuristic algorithms for the non-crossing constrained CMST problem, aiming
at scaling well with problem size and providing good quality solutions.

2.5 Solving the CMST
Pérez-Rúa and Cutululis (2019) presented an extensive review of different approaches for
the optimization of the collection system layout. They divided the papers according to
method and objective function. The methods listed are: heuristics, meta-heuristics and
global optimization; the objective functionswere: total length, investment and investment
plus electrical losses.

Heuristic is a strategy to reach a feasible good solution in a short time in a single run.
These are very problem-specific and often get trapped in local optima, failing to find the
exact solution. There is usually no information on how close to the global optimum the
solution is and, in some cases, there is no guarantee that a feasible solution will be at-
tained. Heuristics mentioned were: Prim, Dijkstra, Kruskal, Esau-Williams and Vogels
Approximation Method.

Meta-heuristics are problem-independent algorithms to guide heuristics in exploring
the solution space more broadly. They are typically non-greedy and accept some input
variations that initially degrade the quality of the results. Meta-heuristics will apply the
underlying heuristic multiple times to come up with one solution. Examples of meta-
heuristics are Genetic Algorithm, Simulated Annealing, Tabu Search, Particle Swarm Op-
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timization and Ant Colony System. These strategies make the problem tractable, but are
still computationally expensive.

Exact solutions can be obtained with a binary integer programming (BIP) or mixed-
integer linear programming (MILP) model. They require solver software to find the exact
solution (often using the branch-and-cut method), which can be expensive. These solu-
tions have quality guarantees, but their computational cost is exponential with problem
size. For solving big problems, which would take too long to find the global optimum, it is
possible to define a desiredminimumdistance from the optimum (the gap, as a percentage
of the optimum value) as the stopping criterion for the iterative search.

2.6 Problem definition
In order to formally state the problem, a few more symbols need to be defined:

• let 𝐵𝑘, 𝑘 ∈ 𝑉 be the set of vertices in the subtree 𝑘 such that 𝑉 = ⋃𝑘∈𝑉 𝐵𝑘 (note that
when 𝜅 > 1many of 𝐵𝑘 will be empty);

• let 𝐶𝑖 represent the point in the Cartesian plane corresponding to the position of
vertex 𝑖.

Then, the CMST with non-crossing constraints problem is defined as:

min
𝐸

∑
𝑖,𝑗∈𝐸

𝑑𝑖,𝑗

s.t. |𝐵𝑘| ≤ 𝜅 ∀ 𝑘
∄ {ℎ, 𝑖}, {𝑖, 𝑗} ∈ 𝐵𝑡 ∪ {root} such that ∀ 𝑘 ≠ 𝑡, 𝑝, 𝑞 ∈ 𝐵𝑘 ∪ {root}

{𝐶ℎ𝐶𝑖 ∩ 𝐶𝑝𝐶𝑞 ≠ ∅ ∨ 𝐶𝑖𝐶𝑗 ∩ 𝐶𝑝𝐶𝑞 ≠ ∅; and
the cone 𝐶ℎ𝐶𝑖 − 𝐶𝑖𝐶𝑗 splits apart {𝐶𝑝 ∶ 𝑝 ∈ 𝐵𝑘}

(2.1)

The objective function in Equation 2.1 is just the total length of the edges. The first
constraint is the capacity limit and the second one is the non-crossing constraint.

The simplest definition of a non-crossing constraint would be to forbid any intersec-
tions, except for edges with a common node, like in:

𝐶𝑔𝐶ℎ ∩ 𝐶𝑖𝐶𝑗 ≠ ∅ iif ℎ = 𝑖 ∀ {𝑔, ℎ}, {𝑖, 𝑗} ∈ 𝐸
But this definition would not allow for parallel cables or a cable running by a WTG

without connecting to it. Hence, the less orthodox definition in Equation 2.1, where an
intersection is necessary but not sufficient to confirm a crossing. There needs to be a split
of the nodes of one of the subtrees by two consecutive edges of the other. Splitting in this
context means that there are points of 𝐵𝑘 both inside and outside the cone defined by the
edge pair. Points that overlap with the lines that define the cone are neither inside nor
outside.
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2.7 The Esau-Williams heuristic
A heuristic that has been used for decades as a reference in the solution of the CMST
problem is the Esau-Williams’ (EW) algorithm (Esau & Williams, 1966). It was chosen
as the basis for the development work, because it is easily extensible and has been the
benchmark in most of the literature studying the CMST heuristics. As noted by Amberg
et al. (1996), EW has, on average, the best performance among heuristics with similar
computation times.

EW is an improvement heuristic, which means it starts with the trivial solution of a
star graph and, at each step, replaces one of the node-root edges by a node-node edge in
a way that reduces the total cost of the layout. It is also a greedy heuristic, because each
step picks the replacement that gives the greatest reduction and this is the single criterion
adopted.

Some additional symbol definitions for the EW algorithm:

• 𝑟: the root node (i.e. the OSS);

• 𝑏𝑖: a mapping providing the subtree index of node 𝑖 (for indexing the mapping 𝐵 of
subtree sets);

• 𝑔𝑖: the cost of the gate edge of node 𝑖; and

• 𝑐: the cost matrix, such that 𝑐𝑖,𝑗 is the cost of connecting node 𝑖 to node 𝑗.

The workings of the original EW heuristic is expressed in pseudo-code in Algorithm 1
(unaware of crossings). This rendition of the algorithm uses the priority queue mecha-
nism to make it more comparable to the extensions presented in chapter 3. For the same
reason, the description of the algorithm is more detailed than usual. In addition, it as-
sumes unitary demand on all non-root nodes (i.e. WTG have the same nominal power),
which was not the case in the paper.

The priority queue is equivalent to a table where each entry contains a priority value
and a data content. It keeps the table sorted by the priority and extracts the first entry
when asked for the next record. The sorting order may be of increasing (min-priority)
or decreasing (max-priority) priorities. Internally it is usually implemented using a heap,
which keeps the entries always ordered and offers 𝑂(log𝑁) complexity for each insertion
or deletion of entries.

A fundamental part of EW is in line 19 and line 20, where the savings for the prospec-
tive edge of a subtree is calculated. A prospective edge is the best connection to make for
a given subtree in replacement for its gate edge, i.e. the one that yields the great reduction
in cable length. Prospective edges are ordered by decreasing savings in the priority queue,
hence the greediness of the algorithm.
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Algorithm 1 Original Esau-Williams heuristic adapted to use a priority queue.
Ensure: 𝑐𝑖,𝑖 = ∞∀𝑖 ∈ 𝑉 no edges from the node to itself
1: function ClassicEW(𝑉, 𝑟, 𝑐, 𝜅)

initialization starts here
2: S← new max-priority queue entries are tuples (priority, data)
3: for all 𝑖 ∈ 𝑉 do
4: 𝐸 ← 𝐸 ∪ {(𝑟, 𝑖)} edge set starts with a star graph
5: 𝐵𝑖 ← {𝑖} one subtree for each node
6: 𝑏𝑖 ← 𝑖 mapping: “the subtree of node 𝑖”
7: 𝑔𝑖 ← 𝑐𝑟,𝑖 gate edge cost of subtree 𝑖
8: 𝑠 ← max(𝑔𝑖 − 𝑐𝑖,𝑗 ∶ 𝑗 ∈ 𝑉) best savings for 𝐵𝑖
9: add 𝑠, (𝑖, 𝑗) to S add entry for edge (𝑖, 𝑗) with priority 𝑠

finished initializing
10: get 𝑠, (𝑢, 𝑣) from S highest savings edge
11: while 𝑠 > 0 do
12: if |𝐵[𝑏𝑢]| + |𝐵[𝑏𝑣]| ≤ 𝜅 then if union within capacity
13: 𝐸 ← 𝐸 ∪ {{𝑢, 𝑣}}
14: 𝐵[𝑏𝑣] ← 𝐵[𝑏𝑣] ∪ 𝐵[𝑏𝑢] merge subtrees
15: for all 𝑖 ∈ 𝐵[𝑏𝑢] do
16: 𝑏𝑖 ← 𝑏𝑣
17: remove from S the entry 𝑠, (𝑖, 𝑗) such that 𝑏𝑖 = 𝑏𝑣
18: if |𝐵[𝑏𝑣]| < 𝜅 then if there is capacity left
19: (𝑖, 𝑗) ← argmin𝑖,𝑗(𝑐𝑖,𝑗 ∶ 𝑖 ∈ 𝐵[𝑏𝑣] ∧ 𝑗 ∈ (𝑉 − 𝐵[𝑏𝑣]))
20: 𝑠 ← 𝑔[𝑏𝑣] − 𝑐𝑖,𝑗
21: add 𝑠, (𝑖, 𝑗) to S add best edge for 𝐵[𝑏𝑣]
22: else subtree full
23: for all (𝑖, 𝑗) such that 𝑖 ∈ 𝑉, 𝑗 ∈ 𝐵[𝑏𝑣] do
24: 𝑐𝑖,𝑗 ←∞ make 𝐵[𝑏𝑣] nodes unreachable
25: else demand of subtree union is higher than capacity
26: for all (𝑖, 𝑗) such that 𝑖 ∈ 𝐵[𝑏𝑢], 𝑗 ∈ 𝐵[𝑏𝑣] do
27: 𝑐𝑖,𝑗 ←∞
28: 𝑐𝑗,𝑖 ←∞ forbid their merging
29: (𝑖, 𝑗) ← argmin𝑖,𝑗(𝑐𝑖,𝑗 ∶ 𝑖 ∈ 𝐵[𝑏𝑢] ∧ 𝑗 ∈ (𝑉 − 𝐵[𝑏𝑢]))
30: 𝑠 ← 𝑔[𝑏𝑢] − 𝑐𝑖,𝑗
31: add 𝑠, (𝑖, 𝑗) to S add best edge for 𝐵[𝑏𝑢]
32: get 𝑠, (𝑢, 𝑣) from S
33: return 𝑉, 𝐸



2.8 Previous work on the collection system layout optimization 11

2.8 Previous work on the collection
system layout optimization

Many improvements to the EW heuristic have been proposed since it was first published.
Öncan and Altınel (2009) present a modified savings calculation formula that includes
three additional terms with corresponding factors 𝛼, 𝛽 and 𝛾. These multiply, respectively,
the edges’ cost, the cost difference between the subtrees’ gates and the fraction of the capac-
ity used by the subtree union being considered. Their approach becomes ameta-heuristic,
as they suggest the application of the EW heuristic to all combinations of discrete sets of
values for each factor and, subsequently, picking the best quality solution. An idea simi-
lar to the 𝛽 factor, mixed with the fraction of the capacity already used, is explored in this
work and is described in section 3.4.

Pillai et al. (2015) presented the enforcement of forbidden areas in an MILP model for
obtaining the exact solution for the collection system optimization. They used Delaunay
triangulation of the OWPP map with forbidden areas within a path-finding heuristic that
determines the shortest paths between vertices while avoiding these areas. The length of
those paths for each pair of vertices take the place of the euclidean distance between them
in the subsequent steps of the method.

Katsouris (2015) examined heuristics for the collection system layout, building upon
the work of Bauer and Lysgaard (2015). Their main approach is for the radial topology,
which is formulated as the open vehicle route planning (OVRP) problem. They apply a
modified Clarke and Wright savings heuristic (Clarke & Wright, 1964) that considers the
non-crossing constraint. Katsouris also examines the branched layouts using a modified
EWheuristic with non-crossing constraint. In addition, their works employ a local search
heuristic as a second step to improve the quality of the solutions offered by the problem-
specific heuristic.

Fischetti and Pisinger (2016) took a hybrid MILP + heuristic approach, which takes
into account multiple cable types and forbidden areas in the OWPP site. They added ex-
tra nodes (called Steiner nodes) on the edges of obstacles to enable the MILP model to
make paths around them. These nodes are akin to the detour nodes introduced in sub-
section 3.3.1. A few so called matheuristics are presented, whose purpose is to reduce the
number of variables in the MILP model. The end result was a reduction in the computa-
tional cost of solving the MILP, enabling the solution of bigger problems.

Klein and Haugland (2017) also proposed a collection system design method that en-
ables paths bypassing obstacles (such as forbidden areas or other subtrees), this time by
adding non-WTG vertices that serve as optional connection points. The bypasses usually
result in stretches of cables running in parallel, which is allowed. Their approach was not
heuristic, but an exact one: they implemented the method in MILP model and solved for
the global optimum with IBM ILOG CPLEX. This concept is similar to the detour nodes
presented in subsection 3.3.1, though in the present thesis this was implemented as part
of a heuristic.

Fotedar (2018) looked into the same problem and employed a modified EW heuristic.
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His approach for crossing avoidance is more elaborate than Katsouris’, using Dijkstra’s
shortest path algorithm (Dijkstra, 1959) to look for paths going around offending edges.
However, his crossing detection method adds a lot of complexity to the heuristic. Another
change introduced by Fotedar to the EW algorithm was a modified savings formula that
includes a shape factor𝑊 . This resembles the rootlust factor presented in section 3.4 and
is further discussed there. The shape factor, however, effectively turns his algorithm into
a meta-heuristic, as it needs to sweep a range of values of𝑊 (and run EW on each one) to
obtain an improvement in the solution quality. As an additional attempt at improving re-
sults, Fotedar investigated a post processing step consisting of local search strategy based
on the work by Ahuja et al. (2003) which was adapted to check for crossings. These efforts
resulted in gains in the quality of the solution, but also increased significantly the execu-
tion time. Fotedar hinted at using Delaunay triangulation for reducing potential crossings,
but did not actually implement it.



CHAPTER3
Heuristics

A faithful pseudo-code version of the EW algorithm as initially proposed was introduced
in Algorithm 1. In this chapter, the implemented extensions to this algorithm will be
presented and explained; they are the following:

• MREW: Multi-Root Esau-Williams (support for multiple root nodes);

• CPEW: Crossing Preventing Esau-Williams (compliance to the non-crossing con-
straint);

• OBEW: Obstable Bypassing Esau-Williams (detour nodes for going around obsta-
cles);

• Rootlust factor for savings calculation.

Each extension was built upon the previous one, thus only the presentation of the
multi-root extensionwill start from the original EWheuristic. The source code (in Python)
for the heuristics developed in this work is available at https://github.com/mdealencar/
interarray.

3.1 Multi-Root EW
OWPP are becoming larger in both number of WTG and in area. It is unusual for new
projects to have a single OSS, therefore an important extension to the algorithm is to sup-
port multiple root nodes. Treating a multi-root problem in a single run of the heuristic
can allow for less costly solutions when compared to clustering the nodes around each
root and solving a separate problem for each cluster.

Multi-root support was the first implemented extension, since it only involves modify-
ing the initialization procedure. The algorithm will now take a set of root nodes 𝑅 as one
of its inputs instead of getting the single root 𝑟.

Within that extension, a new mapping is introduced: 𝜌𝑖. It stores the root node to
which the node 𝑖 is connected. This is initially the closest root to the node, butmay change
as the subtrees merge. For the multi-root extension, 𝜌 has no use after the initialization,
but it will be more relevant for the remaining extensions. Algorithm 2 shows the new
initialization procedure that enables the same main loop of Algorithm 1 to work with
multiple roots. It will be referred to from other algorithms further in this report.

https://github.com/mdealencar/interarray
https://github.com/mdealencar/interarray
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Algorithm 2 Initialization of data structures for Multi-Root EW.
Ensure: 𝑐𝑖,𝑖 = ∞∀𝑖 ∈ 𝑉
1: procedure InitializeMREW(𝑉, 𝑅)
2: S← new max-priority queue
3: for all 𝑖 ∈ 𝑉 do
4: 𝜌𝑖 ← argmin(𝑑𝑟,𝑖 ∶ 𝑟 ∈ 𝑅) find closest root
5: 𝐸 ← 𝐸 ∪ {(𝜌𝑖, 𝑖)} add gate edge
6: 𝐵𝑖 ← {𝑖}
7: 𝑏𝑖 ← 𝑖
8: 𝑔𝑖 ← 𝑐𝜌𝑖,𝑖
9: 𝑠 ← max(𝑔𝑖 − 𝑐𝑖,𝑗 ∶ 𝑗 ∈ 𝑉)
10: add 𝑠, (𝑖, 𝑗) to S

3.2 Crossing Preventing EW
The laying of submarine cables involves digging trenches in the seabed floor where the
cables are laid and covered afterwards. Although the laying of cables across each other is
not technically unfeasible, it is highly undesired both for its high cost and for its detrimen-
tal effect on the cable’s lifetime due the introduction of a hot spot. The EW heuristic is
oblivious to cable crossings, which are highly likely to appear on the algorithm’s solutions
for all but the smallest OWPP, hence the need for the crossing preventing EW (CPEW)
extension.

The original heuristic was aimed mainly at graphs in the euclidean plane, but the au-
thors stressed that the cost of the edges could be a function of other characteristics other
than the distance between the nodes without any change in the algorithm. In the case of
OWPP’s collection system layout, the geographical location of the nodes matter for more
than the definition of the cost of the edges – it is required to avoid the crossing over of
cables. This constraint makes it necessary to deal with the euclidean coordinates of the
nodes within the algorithm.

In CPEW, two new data structures are introduced w.r.t. the one presented in Algo-
rithm 1. The first is that the coordinates of all vertices in the OWPP are passed to the
algorithm via the list 𝐶, which can be indexed by either WTG or OSS (root) nodes, return-
ing a pair of values representing its (𝑥, 𝑦) coordinates. The second is the use, within the
EW loop, of a set of allowed edges𝐴 over the vertices in 𝑉 . Each edge has as a property it’s
associated cost. This takes the place of the cost matrix 𝑐 as the means to forbid edges from
being used in savings calculations. Instead of setting 𝑐𝑖,𝑗 to∞, the edge (𝑖, 𝑗) is removed
from 𝐴 (e.g. when a subtree reaches 𝜅, all edges that contain one of the subtree’s nodes
are removed).

In addition, since the distance between nodes is being used as a proxy for the cost of
the links throughout this work, it is convenient to use a matrix-like notation for retrieving
the length of an edge within the pseudo-code. Therefore, a a matrix-like element 𝑑 will be
used to easily refer to the distance between nodes, where 𝑑𝑖,𝑗 denotes how far apart nodes
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Figure 3.1: Delaunay triangulation (left) and the expanded graph (right) for rbn.)

𝑖 and 𝑗 are and is considered as the cost of connecting them.
The approach used to make an efficient check for cable crossings involved restricting

the amount of connections that each node can make. The edges relevant for the EW al-
gorithm are the ones leading to nodes close to the one being examined. Only in the later
steps of the algorithm, when nearby nodes may already belong to another subtree that is
too big to join, looking for nodes further away may be the only option to achieve more
savings. But it is also at this later stage that connecting to a distant node will most likely
result in a crossing.

It is a known result that the minimum spanning tree (the non-capacitated one) is a
subset of the edges of the Delaunay triangulation when dealing with euclidean distances
(Shamos, 1978). This triangulation can be computed efficiently in𝑂(𝑁 log𝑁) and contains
no crossings.

The Delaunay triangulation is very useful for reducing the available edges from a full
graph to much smaller set, but it proved to be too restrictive for finding good solutions for
the CMST. Therefore, the edges given by the triangulation were expanded with edges that
connect the non-common vertices of each pair of neighboring triangles across the shared
side between them. Neighboring triangles form a quadrilateral plus one of its diagonals;
this procedure adds the other diagonal if it is not longer than 2.15 times the existing diag-
onal and if the quadrilateral is convex. This length threshold was chosen arbitrarily after
some experimentation. Figure 3.1 depicts the Delaunay triangulation and the expanded
edge set for a small OWPP.

The total number of Delaunay edges is given by 2𝑁 −2−𝐻, where𝐻 is the number of
nodes in the convex hull and 𝑁 is the total number of vertices. The expansion procedure
will increase the number of edges by a factor not greater than two, so that the edge count is
still 𝑂(𝑁). This makes it practical to check for crossings with the help of a mapping from
edge to crossing edges that is built along the expansion procedure. Table 3.1 shows the
number of edges for the Delaunay, expanded Delaunay and full graph networks as well as
the ratio of expanded edges to number of nodes for each of the OWPP in the working set.

The gate edges, however, aremostly not in theDelaunay expanded triangulation. Those
edges have the property of being all connected to a root node, which allows for a cheap
triage before making more expensive intersection calculations. This triage uses the an-
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Table 3.1: Comparison of number of nodes and edges for the OWPP set for different rules.

OWPP
handle

Vertices Delaunay
edges

Expanded
edges

Full graph
edges

Ratio Expanded
edges:Vertices

thanet 101 274 426 5050 4.2
dantysk 81 212 320 3240 4.0
horns 81 215 385 3240 4.8
anholt 112 316 485 6216 4.3
sands 109 288 457 5886 4.2
ormonde 31 72 106 465 3.4
london 177 500 768 15576 4.3
rbn 28 70 98 378 3.5
rbs 54 139 209 1431 3.9
tess 115 321 588 6555 5.1
tess3 244 699 1308 29646 5.4

gular position of nodes w.r.t. root nodes (which are calculated at the beginning of the
algorithm). It involves comparing the angle between the two nodes under consideration
for connection (obstruction angle) with the angle of the existing gate edges, an 𝑂(𝑁) oper-
ation. A second cheap triage is then made by comparing the length of the target subtree’s
gate with that of the gates that fell within the edge’s obstruction angle. Only the gates
longer than the former then go through a line segments crossing algorithm adapted from
“Faster Line Segment Intersection” in (Kirk, 1994). When a prospective edge is found to in-
tersect an existing one in the solution graph, it is discarded and another option is searched
for the subtree in question.

The CPEW algorithm is presented in two parts: first, the initialization procedure is
introduced in Algorithm 3 and only differs from Algorithm 2 by the setting up of the new
data structures; second, Algorithm 4 shows the extended EWheuristic as explained in this
section.

The implementation encompasses a lot of details that are omitted here for clarity. It is
particularly complicated when edges overlap or when a node from one edge is contained
in the line segment defined by the other one. These cases are commonly considered as
intersections from a geometric point of view, but are not so in the implemented algorithms:
they can tell them apart from mid-segment crossings and verify if the overlap causes the
sectioning of subtrees (see Equation 2.1). The reason for this relaxation from the geometric
criterion is that a concrete realization of a layoutwith overlapswill requireminor amounts
of extra cable length to implement parallel lines where a superposition is suggested by
the solution (since the clearance of cable trenches are small compared to the inter-WTG
distances). A similar reasoning applies to edges going over a WTG without connecting to
it.

The CPEW algorithm is able to produce feasible layouts for the entire set of OWPP for
each capacity value 𝜅. As an example, Figure 3.2 shows a layout problem for which the
classic EW solution is unfeasible because of cable crossings next to the feasible solution
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Algorithm 3 Initialization of data structures for CPEW and OBEW.
1: procedure InitializeExtendedEW(𝑉, 𝑅, 𝐶)
2: S← new max-priority queue
3: 𝐴 ← ExpandedDelaunay(𝑉, 𝑅, 𝐶) explained in the text
4: for all 𝑖 ∈ 𝑉 do
5: 𝜌𝑖 ← argmin(𝑑𝑟,𝑖 ∶ 𝑟 ∈ 𝑅) store closest root
6: 𝐸 ← 𝐸 ∪ {(𝜌𝑖, 𝑖)} add gate edge
7: 𝐵𝑖 ← {𝑖}
8: 𝑏𝑖 ← 𝑖
9: 𝑔𝑖 ← 𝑑𝜌𝑖,𝑖
10: for all 𝑟 ∈ 𝑅 do
11: 𝜃𝑖,𝑟 ← AngleOf(𝐶𝑖, 𝐶𝑟) basic geometry, not detailed further
12: 𝑋𝑖,𝑟 ← (𝑖, 𝑖) extremities of subtree – only relevant for OBEW
13: 𝑗 ← argmin𝑗(𝑑𝑖,𝑗 ∶ {𝑖, 𝑗} ∈ 𝐴)
14: 𝑠 ← 𝑔𝑖 − 𝑑𝑖,𝑗
15: add 𝑠, (𝑖, 𝑗) to S

Figure 3.2: Thanet EW results without crossing detection (left) and with it (right)

provided my CPEW for the same problem.

3.2.1 Quality implications of CPEW
The introduction of constraints to EW in CPEW inevitably reduces the overall quality of
the solution, i.e. the CMST graph produced has, in general, a greater total length than
the unconstrained EW. In order to access that effect, the algorithms are applied to the
set of OWPP displayed in Figure A.1, with 𝜅 values ranging from 2 to 15. To make it
easier to compare results across OWPP of diverse sizes, the relative change of total layout
length 𝜆 w.r.t. a reference 𝛬 is calculated (for each farm 𝐹, for each capacity 𝜅). Results
are summarized per OWPP with the mean values 𝑄𝐹 across capacities for each farm, as
shown in Equation 3.1.
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Algorithm 4 Crossing Preventing EW
1: function CrossingPreventingEW(𝑉, 𝑅, 𝐶, 𝜅)
2: InitializeExtendedEW(𝑉, 𝑅, 𝐶) Algorithm 3
3: get 𝑠, (𝑢, 𝑣) from S
4: while 𝑠 > 0 do
5: 𝐴 ← 𝐴 − {{𝑢, 𝑣}} edge won’t be searched anymore
6: if (𝑢, 𝑣) does not cross any edges in 𝐸 then check for gate/non-gate edges
7: if |𝐵[𝑏𝑢]| + |𝐵[𝑏𝑣]| ≤ 𝜅 then
8: 𝐸 ← 𝐸 ∪ {{𝑢, 𝑣}}
9: 𝐵[𝑏𝑣] ← 𝐵[𝑏𝑣] ∪ 𝐵[𝑏𝑢]
10: for all 𝑖 ∈ 𝐵[𝑏𝑢] do
11: 𝑏𝑖 ← 𝑏𝑣
12: remove from S the entry 𝑠, (𝑖, 𝑗) such that 𝑏𝑖 = 𝑏𝑣
13: if |𝐵[𝑏𝑣]| < 𝜅 then
14: 𝐵𝑢𝑝𝑑 ← 𝐵𝑢𝑝𝑑 ∪ {𝑏𝑣} 𝐵𝑢𝑝𝑑 holds subtrees that need a new edge
15: else
16: for all (𝑖, 𝑗) such that {𝑖, 𝑗} ∈ 𝐴 ∧ 𝑗 ∈ 𝐵[𝑏𝑣] do
17: 𝐴 ← 𝐴 − {{𝑖, 𝑗}}
18: if (𝑖, 𝑗) is in S then
19: remove entry 𝑠, (𝑖, 𝑗) from S
20: 𝐵𝑢𝑝𝑑 ← 𝐵𝑢𝑝𝑑 ∪ {𝑏𝑖}
21: else demand of subtree union is higher than capacity
22: for all (𝑖, 𝑗) such that 𝑖 ∈ 𝐵[𝑏𝑢] ∧ 𝑗 ∈ 𝐵[𝑏𝑣] do
23: 𝐴 ← 𝐴 − {{𝑖, 𝑗}}
24: 𝐵𝑢𝑝𝑑 ← 𝐵𝑢𝑝𝑑 ∪ {𝑏𝑢}
25: else crossing found
26: 𝐵𝑢𝑝𝑑 ← 𝐵𝑢𝑝𝑑 ∪ {𝑏𝑢}
27: for all 𝑘 ∈ 𝐵𝑢𝑝𝑑 do find a new edge for subtrees whose situation changed
28: (𝑖, 𝑗) ← argmin𝑖,𝑗(𝑑𝑖,𝑗 ∶ 𝑖 ∈ 𝐵𝑘 ∧ {𝑖, 𝑗} ∈ 𝐴)
29: 𝑠 ← 𝑔𝑘 − 𝑑𝑖,𝑗
30: add 𝑠, (𝑖, 𝑗) to S
31: 𝐵𝑢𝑝𝑑 ← ∅
32: get 𝑠, (𝑢, 𝑣) from S
33: return 𝑉, 𝐸
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Figure 3.3: Quality comparison of EW and CPEW with and without Delaunay extended
edges.

𝑄𝐹 =
1
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15
∑
𝜅=2

𝜆𝐹,𝜅 − 𝛬𝐹,𝜅
𝛬𝐹,𝜅

(3.1)

The reference algorithm that provides 𝛬𝐹,𝜅 is the CPEW using a full graph. This algo-
rithm was chosen because it produces feasible layouts for all OWPP and 𝜅 values and is
still quite similar to the original EW heuristic. It will be used as the reference for quality
comparisons for the remaining of this report.

Figure 3.3 shows the 𝑄 values of the algorithms described so far for the full OWPP set.
As expected, the unconstrained EW reaches cheaper layouts than the others inmost cases,
except for the two synthetic OWPP (tess and tess3), that contradict the overall trend. It
should be noted that the restriction on the available edge choices has a very small impact
in the qualities of both EW and CPEW heuristics. Considering the benefit of reduced
computing complexity when checking for crossings that the expanded Delaunay provides,
this seems like an attractive trade-off.

It is somewhat unintuitive that the added restrictions of using only the expanded De-
launay edges and of forbidding cable crossings resulted in a reduction in the total length of
the solutions for those twoOWPP. Figure 3.4 shows the solutions produced by the original
EW and by CPEW for one case of tess3, where its clear that themore radially directed sub-
trees of CPEW decrease the cable required. This behavior is a consequence of the imple-
mentation in CPEW of a tie-breaking criterion introduced in the search for the maximum
savings edge on Algorithm 4, line 28: if there are multiple edges with approximately the
same length, pick the one connecting to the subtree with the shortest gate edge. This tie-
breaking has the greatest effect exactly on OWPPs that have very uniformly spaced WTG,
such as the synthetic farms tess and tess3. The lack of a tie-breaking criterion in the orig-
inal EW results in it choosing essentially in a random way from the several equal-savings
options. Hence, even though CPEW is more constrained than the original EW, this slight
incentive in moving radially towards the root creates better layouts in some instances.
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Figure 3.4: Original EW (left) and CPEW (right) layouts for tess3.

As for the shortcomings of the CPEW, the resulting layouts often leave small subtrees
that still have spare capacity isolated. Some of these are close enough to each other and
have compatible sizes for achieving length savings if they were merged, but the edge to ef-
fect that is obstructed by another subtree. Besides increasing the total length of the layout,
this behavior also incurs in an elevated number of feeders (i.e. gates, represented on the
figures by the symbol 𝜙) in the OSS, which increase costs and may not even be viable in
some cases.

The layouts shown in Figure 3.5 illustrate this point clearly. The information box on
the upper right of each layout shows the number of feeders of their OSS; next to this num-
ber, in parenthesis, there is the percentage change in number of feeders relative to the
minimum quantity necessary at that cable capacity (i.e. ⌈𝑁

𝜅
⌉). The amount of feeders is

around 40% higher than the minimum because of the many sub-capacity subtrees.

3.3 Obstacle Bypassing EW
In view of the shortcoming of the CPEW regarding length and number of feeders, another
extension was developed, aimed at getting the subtrees to more often grow to their full
capacity. This extension was called obstacle bypassing EW (OBEW) and it builds upon
the CPEW.

The principle is to examine alternatives to a crossing other than to discard the offend-
ing edge. Due to the characteristic behavior of EW, the addition of edges progresses typ-
ically from the nodes further away from the root node to those near it. Most of the cross-
ings are with the gate edges of subtrees that have already reached capacity. These edges
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Figure 3.5: Anholt (left) and dantysk (right) results from CPEW for 𝜅 = 8.

are commonly long compared to node-to-node edges and can be made to deviate, or take
a “detour”, from a straight line without much increase in their total length.

Implementing this extension imposed several challenges. Themost important of them
is that the Delaunay expanded edges are not enough to provide good detour alternatives.
Therefore, while the older part of the algorithm still uses them for edge selection and
crossing detection, the detour edges must be checked against all edges in 𝐸 and prospec-
tive edges checked against all detour edges. Since the number of detour edges is small
compared to the total edge count in a layout, this does not add a lot of computation to the
heuristic.

The extension implemented considers alternative routes for all the gate edges that are
found to be on the way of a potential edge. It does so by examining the extremities of the
obstacle that would be formed if the subtrees were joined and devising paths around them.
These detour routes will incur in an added cost in terms of cable length, which must be,
in total, less than the savings provided by the edge under scrutiny. In this fashion, every
edge addition will have a positive saving on the overall cable length and the subtrees will
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have more opportunities to grow. Some candidate edges will still get discarded if the cost
of the detours is higher than the savings they offer.

3.3.1 Detour planning
A subtree’s extreme points with regards to detour planning are the nodes that the detour
may go around in order not to cross any of the subtree’s edges. This concept makes the
extremities dependent on both nodes of the edge that needs to be replaced. To avoid go-
ing through elaborate geometric calculations or graph searches for every detour planning,
the algorithm uses instead the nodes most likely to be the extremities: the one furthest in
the clockwise direction (low limit) and the one furthest in the counterclockwise direction
(high limit), taking the root as the origin of the polar coordinate system. The implementa-
tion of extreme nodes assumes that no subtree will span more than 180°. Since gate edges
are radial (i.e. in a line that contains the root node) and implemented detours are likely
to be roughly in a radial direction as well, this choice of extremes works well most of the
time.

The detour extension has two phases: the planning and the execution. Between them
takes place the length accounting to decide if the edge should be taken or discarded. Each
crossing is examined individually and it is possible for detour gates from previous itera-
tions to enter the process again and get a new detour. A detour will typically convert an
edge into two, which will have a new node, called detour node, as their common “corner”.
Detour nodes are placed at the same position in the Cartesian plane as theWTG node that
must be cornered, but they are not connected to that node. It should be noted that the
path planning algorithm looks for shorter paths skipping previous detour nodes as well;
it may also choose to connect to a different WTG node of the subtree being modified if it
is closer to the detour node.

The detour planning procedure has the following inputs:

• 𝑟: the root to which the subtree is connected;

• (𝑦, 𝑧): the edge in 𝐸 that needs a detour;

• (𝑢, 𝑣): the prospective edge to be added to 𝐸;

• (𝑥𝐿, 𝑥𝐻): the extremities of the subtree that would block (𝑦, 𝑧);

• 𝑠: detour cost limit (note: this is just to rule out too expensive detours early).

And the return values are:

• 𝑐: the detour cost in excess of 𝑑𝑦,𝑧;

• 𝑃: the sequence nodes that defines the detour;

• 𝑊 : the corresponding side of the obstacle each of the nodes in 𝑃 is going around.
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Algorithm 5 presents the function PlanDetour, which finds a crossing-free alterna-
tive route for an edge whose removal is being considered. Since there are cases where the
edge (𝑦, 𝑥𝐿) or (𝑦, 𝑥𝐻) crosses another edge already in 𝐸, the function is recursive, calling
itself with the detour edges that need themselves a crossing-free alternative. All the extra
distances are accounted for, so that the detours are guaranteed not to cost more than the
initial savings. The detour planning is not supposed to provide elaborate routes, it makes
a best effort attempt and will give up if it gets too complicated. Still, multiple successive
uses of detours will result in non-trivial paths. In addition, the procedure examines both
the high and low extremities of an obstacle, which increases the chance of finding a viable
alternative.

Algorithm 5 Detour Planning
1: function PlanDetour(𝑟, (𝑦, 𝑧), (𝑢, 𝑣), (𝑥𝐿, 𝑥𝐻), 𝑠)
2: for all 𝜎 ∈ {𝐿,𝐻} do will try to corner on the low and high extremes
3: ℎ ← argmin𝑗(𝑑[𝑥𝜎, 𝑗] ∶ 𝑗 ∈ 𝐵[𝑏𝑦]) find node in subtree that is closest to 𝑥𝜎
4: while ℎ is a detour node do
5: 𝑖 ← neighbor of ℎmoving away from root
6: if angle (𝑖, ℎ, 𝑥𝜎) points to obstacle at ℎ then
7: ℎ ← 𝑖 this eliminates unnecessary bends in the path
8: 𝑐𝜎 ← 𝑑[ℎ, 𝑥𝜎] + 𝑑[𝑥𝜎, 𝑧]−LengthOf(ℎ, ..., 𝑦, 𝑧) calculate added cost
9: if 𝑠 − 𝑐𝜎 < 0 then
10: 𝑐𝜎 ←∞ not worth making a detour on this side
11: else
12: if (ℎ, 𝑥𝜎) intersects one (𝑖, 𝑗) ∈ 𝐸 then
13: (𝜒𝐿, 𝜒𝐻) ← 𝑋[𝑏𝑖, 𝑟]
14: (𝑐, 𝑃,𝑊) ← PlanDetour(𝑟, (ℎ, 𝑥𝜎), (𝑖, 𝑗), (𝜒𝐿, 𝜒𝐻), 𝑠 − 𝑐𝜎)
15: 𝑐𝜎 ← 𝑐𝜎 + 𝑐
16: 𝑃𝜎 ← (𝑃, 𝑥𝜎)
17: 𝑊𝜎 ← (𝑊, 𝜎)
18: else if (ℎ, 𝑥𝜎) intersects many (𝑖, 𝑗) ∈ 𝐸 then
19: 𝑐𝜎 ←∞ too complex, giving up
20: else no crossings
21: 𝑃𝜎 ← (ℎ, 𝑥𝜎)
22: 𝑊𝜎 ← (𝜎, )
23: 𝜎 ← argmin(𝑐𝜎 ∶ 𝜎 ∈ {𝐿,𝐻})
24: if 𝑐𝜎 < ∞ then
25: return 𝑐𝜎, 𝑃𝜎,𝑊𝜎
26: else
27: return ∅
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Figure 3.6: CPEW (left) and OBEW (right) layouts for london at 𝜅 = 6.

3.3.2 OBEW heuristic

The OBEW is shown in Algorithm 6. The check for intersections with regular edges is
separate from the one with gate edges. The former is eliminatory – (𝑢, 𝑣) is discarded
if a crossing is detected – while the latter triggers detour planning. The crossings might
be multiple and an attempt will be made to find a detour for each. Next, the costs are
summed up a a decisionmade to add or discard the prospective edge. Adding an edge that
requires detours will implicate themodification of𝐸 to remove some edges and add others.
Another additional step compared to CPEW is the updating of the subtree’s extremities
w.r.t each of the roots after a merger is performed.

Figure 3.6 illustrates the effect of introducing detour nodes in the EW heuristic. There
is a significant reduction in both the total length and in the total number of feeders.

The aggregated effect across capacities of OBEW can be seen in Figure 3.7. This heuris-
tic provides better quality solutions for all OWPP except rbn. This is the smallest OWPP
of the set (only 27 WTG) and the quality is less than half a percentage point worse, so it is
fair to say that OBEW is a significant improvement over CPEW.
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Algorithm 6 Obstacle Bypassing EW
1: function ObstacleBypassingEW(𝑉, 𝑅, 𝐶, 𝜅)
2: InitializeExtendedEW(𝑉, 𝑅) Algorithm 3
3: get 𝑠, (𝑢, 𝑣) from S
4: while 𝑠 > 0 do
5: 𝐴 ← 𝐴 − {{𝑢, 𝑣}}
6: if (𝑢, 𝑣) does not cross any non-gate edges in 𝐸 then
7: if |𝐵[𝑏𝑢]| + |𝐵[𝑏𝑣]| ≤ 𝜅 then
8: 𝑝 ← 0, 𝑃 ← ∅
9: 𝜒 ← gate edges in 𝐸 that intersect (𝑢, 𝑣) this uses the nodes’ angles
10: for all (𝑦, 𝑧) ∈ 𝜒, 𝑖 ∈ [1, |𝜒|] do
11: (𝜒𝐿, 𝜒𝐻) ← extreme nodes of 𝑋[𝑏𝑣, 𝜌[𝑏𝑦]] ∪ 𝑋[𝑏𝑢, 𝜌[𝑏𝑦]]
12: (𝑐𝑖, 𝑃𝑖,𝑊 𝑖) ← PlanDetour(𝜌𝑣, (𝑦, 𝑧), (𝑢, 𝑣), (𝜒𝐿, 𝜒𝐻), 𝑠) plan detours
13: 𝑝 ← 𝑝 + 𝑐𝑖
14: if 𝑝 < 𝑠 then either detour is within budget or there are no crossings
15: implement paths 𝑃𝑖 ∀ 𝑖 ∈ [1, |𝜒|] in 𝐸 in substitution of crossed gates
16: 𝐸 ← 𝐸 ∪ {{𝑢, 𝑣}}
17: 𝐵[𝑏𝑣] ← 𝐵[𝑏𝑣] ∪ 𝐵[𝑏𝑢]
18: update extremities 𝑋[𝑏𝑣, 𝑟] ∀ 𝑟 ∈ 𝑅
19: for all 𝑖 ∈ 𝐵[𝑏𝑢] do
20: 𝑏𝑖 ← 𝑏𝑣, 𝜌𝑖 ← 𝜌𝑣
21: remove from S the entry 𝑠, (𝑖, 𝑗) such that 𝑏𝑖 = 𝑏𝑣
22: if |𝐵[𝑏𝑣]| < 𝜅 then
23: 𝐵𝑢𝑝𝑑 ← 𝐵𝑢𝑝𝑑 ∪ {𝑏𝑣}
24: else
25: for all (𝑖, 𝑗) such that {𝑖, 𝑗} ∈ 𝐴 ∧ 𝑗 ∈ 𝐵[𝑏𝑣] do
26: 𝐴 ← 𝐴 − {{𝑖, 𝑗}}
27: if (𝑖, 𝑗) is in S then
28: remove entry 𝑠, (𝑖, 𝑗) from S
29: 𝐵𝑢𝑝𝑑 ← 𝐵𝑢𝑝𝑑 ∪ {𝑏𝑖}
30: else detour not found for gate crossing
31: 𝐵𝑢𝑝𝑑 ← 𝐵𝑢𝑝𝑑 ∪ {𝑏𝑢}
32: else demand of subtree union is higher than capacity
33: for all (𝑖, 𝑗) such that 𝑖 ∈ 𝐵[𝑏𝑢] ∧ 𝑗 ∈ 𝐵[𝑏𝑣] do
34: 𝐴 ← 𝐴 − {{𝑖, 𝑗}}
35: 𝐵𝑢𝑝𝑑 ← 𝐵𝑢𝑝𝑑 ∪ {𝑏𝑢}
36: else edge to edge crossing
37: 𝐵𝑢𝑝𝑑 ← 𝐵𝑢𝑝𝑑 ∪ {𝑏𝑢}
38: for all 𝑘 ∈ 𝐵𝑢𝑝𝑑 do find a new edge for subtrees whose situation changed
39: (𝑖, 𝑗) ← argmin𝑖,𝑗(𝑑𝑖,𝑗 ∶ 𝑖 ∈ 𝐵𝑘 ∧ {𝑖, 𝑗} ∈ 𝐴)
40: 𝑠 ← 𝑔𝑘 − 𝑑𝑖,𝑗
41: add 𝑠, (𝑖, 𝑗) to S
42: 𝐵𝑢𝑝𝑑 ← ∅
43: get 𝑠, (𝑢, 𝑣) from S
44: return 𝑉, 𝐸
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Figure 3.7: Quality comparison between CPEW and OBEW.

3.4 Rootlust bonus factor
A good source of ideas for improving the heuristics is to look at the solutions known to be
very close to the global minimum of the optimization problem. Pérez-Rúa and Cutululis
(2022) described a mixed integer linear program (MILP) global optimization formulation
of the CMST problem. This approach looked into minimizing the total investment cost,
which, in the general case, is not a linear function of total cable length. However, by
restricting the cable types in the model to a single one, the solution becomes equivalent to
the minimal length layout. Their implementation of the MILP model (Pérez-Rúa, 2022)
was used along with IBM ILOG’s CPLEX version 22.1 to obtain layouts within 1% of the
global minimum. TheMILP formulation does not consider anything akin to detour nodes,
hence those solutions are of the type produced by CPEW, with only direct connections
between nodes.

Several comparisons of the layouts produced by OBEWwith those given by the global
optimizer (GO) revealed that the subtrees by GO have a different general structure from
those by OBEW (and CPEW, for that matter). Figure 3.8 and Figure 3.9 show the solutions
by the two differentmethods side by side and illustrate that point. The subtrees inGO tend
to have the WTGs closer to the gate aligned almost radially (i.e., pointing to the root).

These observation supported the introduction of a change in the savings calculation
formula to favor the union to subtrees that have a shorter gate edge than the one being
examined for connection options. This concept is not new, it has been proposed by Öncan
and Altınel (Öncan & Altınel, 2009) as the parameter 𝛽 and by Fotedar (Fotedar, 2018) as
the shape factor𝑊 . Both authors intended on being able to direct the progression of EW
towards radial edge lines. Their parameters, however are applied to static properties of the
nodes (i.e. related to their relative positions). They managed to get better quality layouts
by sweeping a range of values for their parameters, inwhat could be called ametaheuristic.

A different approach is proposed here. The incentive (or savings bonus) is to be pro-
portional to both the reduction in gate length (just like the 𝛽 factor) and the fraction of the
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Figure 3.8: OBEW (left) and Global Optimizer (right) layouts for sands at 𝜅 = 11.

Figure 3.9: OBEW (left) and Global Optimizer (right) layouts for sands at 𝜅 = 6.
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total capacity 𝜅 already filled by the subtree. Equation 3.2 shows the proposed formula for
the savings calculation using the rootlust bonus factor 𝜆|𝐵[𝑏𝑖]|/𝜅.

𝑠𝑖,𝑗 = 𝑔[𝑏𝑖] − 𝑑𝑖,𝑗 + 𝜆|𝐵[𝑏𝑖]|𝜅 (𝑔[𝑏𝑖] − 𝑔[𝑏𝑗]) (3.2)

This formulation incentivizes the selection of edges that will join the subtree to others
with shorter gate edges, which means moving in a radial direction. Differently from previ-
ous work, the size of the incentive grows as the subtree approaches its capacity limit. This
way, there is still a phase of less directed subtree expansion while it is small, preventing
an early run to the center and allowing for accumulating the savings of linking nodes that
are far from the root.

The change in Algorithm 6 to implement the rootlust bonus involves only line 39 and
line 40, as shown in Algorithm 7.

Algorithm 7 Changing OBEW (Algorithm 6) to use rootlust
39: (𝑖, 𝑗) ← argmin𝑖,𝑗(𝑑𝑖,𝑗 ∶ 𝑖 ∈ 𝐵𝑘 ∧ {𝑖, 𝑗} ∈ 𝐴)
40: 𝑠 ← 𝑔𝑘 − 𝑑𝑖,𝑗 original EW savings formula

changes to:
39: (𝑖, 𝑗) ← argmin𝑖,𝑗(𝑑𝑖,𝑗 − 𝜆 |𝐵𝑘|

𝜅
(𝑔𝑘 − 𝑔[𝑏𝑗]) ∶ 𝑖 ∈ 𝐵𝑘 ∧ {𝑖, 𝑗} ∈ 𝐴)

40: 𝑠 ← 𝑔𝑘 − 𝑑𝑖,𝑗 + 𝜆 |𝐵𝑘|
𝜅
(𝑔𝑘 − 𝑔[𝑏𝑗]) rootlust savings formula

Figure 3.10 puts together four layouts obtained by differentmethods for the same prob-
lem. The advancements in total length reduction are made both with the decrease in the
number of subtrees as well as with more of the subtrees including nodes closer to the root.

The aggregated results per OWPP for OBEX, OBEX with rootlust (𝜆 = 0.6 and 𝜆 =
0.7) and Global Optimizer are presented in Figure 3.11, aggregated by OWPP, and in Fig-
ure 3.12, aggregated by capacity (refer to Figure A.2 for the non-aggregated results). The
most relevant gains are introduced with the OBEX heuristic, but the rootlust savings for-
mula provides an additional benefit for most of the OWPP. Interestingly, when looking at
results at Figure 3.12, the proposed heuristics actually achieve, in average, a lower total
length than the global optimization for 𝜅 = 2. It is at the lower end of capacities than the
ability to route around other subtrees provide the greatest benefit. As capacity increases,
the rootlust bonus factor becomes more relevant for the improvement in total length re-
duction. The capacity range 𝜅 = [7, 10] is where the gap between the algorithms solutions
and the global optima is the largest.

To take a closer look at the lower end of the capacity, where OBEW sometimes reach
better layouts than the exact optimization method, some comparisons are shown in Fig-
ure 3.13 and Figure 3.14. It is clear that at low capacities the EW property of grouping
the furthest nodes together is a good strategy, as long as their gate edges do not prevent
other good groupings to form along the way – which is enabled by the detour nodes. It
is likely that a MILP implementation that allows the bypassing of obstacles, like the one
suggested by Klein and Haugland (2017), will achieve exact solutions even shorter that
the ones produced by OBEW.
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Figure 3.10: A view of the progression towards the global optimum for anholt at 𝜅 = 13.
(a) CPEW (b) OBEW

(c) OBEW + rootlust (𝜆 = 0.6) (d) GO
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Figure 3.11: Quality comparison ofOBEW,OBEWwith rootlust and theGlobalOptimizer.

Figure 3.12: Quality comparison aggregated by capacity.

Figure 3.13: OBEW (left) and Global Optimizer (right) layouts for ormonde at 𝜅 = 3.
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Figure 3.14: OBEW (left) and Global Optimizer (right) layouts for thanet at 𝜅 = 3.

The actual total lengths obtained in each of the solutions presented in the figures are
available in Table A.1 and Table A.2.
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CHAPTER4
Computational cost

This chapter examines the behavior of the theoretical and empirical computational de-
mand of the proposed heuristics as the problem size changes. The former takes into ac-
count the worst case scenarios for each of the algorithms’ steps, while the later looks at
the execution of the procedures on the OWPP working set.

4.1 Algorithmic complexity
An efficient implementation of the original Esau-Williams heuristic is described in (Ker-
shenbaum, 1974), where the complexity is shown to be𝑂(𝑁 log𝑁). This section examines
the complexity of the extended versions of EW presented in ?? – CPEW and OBEW. The
Multi-Root extension and the rootlust factor do not change the complexity of the algo-
rithms.

The number of iterations of the main loop of both algorithms is considered to be pro-
portional to𝑁. At the best case (i.e. no crossings are detected), one loop iteration is needed
for each replacement of a gate edge by a non-gate edge – these happen at most 𝑁 − ⌈𝑁/𝜅⌉
times. Each detected crossing by a potential edge will add one additional loop iteration,
since when an edge is discarded no change is made to the graph.

These algorithms are running with the expanded Delaunay edge set, which is propor-
tional to 𝑁. Hence, the worst case of discarded edges has to be bound by the number of
edges available to choose from. This is basis for using𝑂(𝑁) as the bound for themain loop
iterations. Nevertheless, it is informative to look at the actual iteration counts from the
optimization of the working OWPP set.

Figure 4.1 was obtained by running four heuristic variants – CPEW with full edges,
CPEW, OBEW and OBEW with rootlust – for all farms with 𝜅 ∈ [2, 15]. Each plot sum-
marizes the percent fraction of the algorithms’ iterations that were spent with discarded
edges; one graph shows the mean, while the other shows the maximum across the values
of 𝜅 for each of the OWPP. The data points are positioned in the x axis according to the
number of WTGs in the OWPP that originated them.

The figure conveys two important insights: that the OBEW extension discards signifi-
cantly less edges than the CPEW extension and that the fraction of discarded edges does
not increase with increasing number of WTG. There is a variability in the value of that
fraction across the OWPP set, but in the context of complexity analysis, the theoretical
𝑂(𝑁) bound seems to hold.
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(a)mean (b)maximum

Figure 4.1: Percentage of iterations spent on discarded edges, aggregated for each OWPP
across 𝜅 ∈ [2, 15].

Another information that can be gathered from Figure 4.1 is that the use of expanded
Delaunay edges reduced the number of discarded edges, but the more significant reduc-
tion was enabled by the OBEW extension. The rootlust factor also reduces this metric
when compared to pure OBEW, but its effect is less visible due to the scale of the y axis.
This is expected, since the more radially oriented the edges are, the less likely the occur-
rence of crossings.

In the next sections, the complexity𝑂(log𝑁) is used for one addition or extraction from
the priority queue, as discussed in section 2.7. As for tasks that depend on the number of
neighbors of a node within the expanded Delaunay edge set, the bound used is 12, which
means𝑂(1). This is based on the average number of neighbors in aDelaunay triangulation
(6) multiplied by 2 because of the expansion.

4.1.1 Initialization
The initialization procedure (algorithm 3) is very straightforward:

• create expanded Delaunay edge set: 𝑂(𝑁 log𝑁)

• loop for populating S (𝑁 times):

– add entry to priority queue 𝑂(log𝑁)
– other tasks: 𝑂(1)

Overall complexity of initialization: 𝑂(𝑁 log𝑁)
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4.1.2 CPEW
Crossing Preventing EW’s main loop (as in Algorithm 4). For each iteration (𝑂(𝑁) times):

• check crossings with edges (a list of crossings is available): 𝑂(1)

• check crossings with gates: 𝑂(𝑁)

• remove S entry once in case of sub-𝜅merger (map subtree:entry is known): 𝑂(log𝑁)

• remove S entry 𝜅 times in case of 𝜅merger (map subtree:entry is known): 𝑂(log𝑁)

• loop to update S (just once in most iterations, but never more than 12𝜅 times):

– find best edge (𝜅 comparisons): 𝑂(1)
– add entry to priority queue 𝑂(log𝑁)

• extract item from priority queue: 𝑂(log𝑁)

Overall complexity of CPEW: 𝑂(𝑁2)

4.1.3 OBEW
Structure of Obstacle Bypassing EW’s main loop (Algorithm 6) is similar to CPEW’s, with
the additional check for crossings with detour edges and the planning (Algorithm 5) and
implementation of detours (line 15 of Algorithm 6). Only the additional steps will be
analyzed here.

• check crossings with detours: 𝑂(𝑁2);

• PlanDetour can be called by two mechanisms: loop and recursion

– loop calls are limited by the maximum number of edges in the solution: (𝑁)
– recursion depth is limited to 4, each run canmake 2 calls, worst case is 31 calls;
– loop × recursion limited by 31𝑁: 𝑂(𝑁)

• execution of PlanDetour:

– check crossings with edges: 𝑂(𝑁)
– other tasks: 𝑂(1).

• implement detours (at worst 𝑁/2 times with, at most, 4 + 1 edges to add): 𝑂(𝑁);

The additional steps of crossings checks in the main loop and within PlanDetour
are both of complexity 𝑂(𝑁2) and supersede the complexity of the parts in common with
CPEW. The overall worst-case complexity of OBEW becomes 𝑂(𝑁3).
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4.2 Running time
This section complements the complexity analysis with some empirical data on running
times and allows for a qualitative comparison between the heuristics.

The algorithms were implemented in Python and executed by the interpreter CPython
version 3.9 in a desktop PC with an AMD Ryzen 3 3200G processor. The heuristics uses
the Python modules networkx for graph data structures and numpy for array operations.
Just for reference, the global optimization performed by CPLEX was executed in a high
performance computing cluster from DTU (this step will not be detailed further as its
performance is not within the scope of this work).

The purpose of presenting running time data is only for observing the influence of
algorithm choice and OWPP size on the computational cost of the heuristics. The data
points’ absolute value have little meaning by themselves, for they are hardware-specific
and Python is an interpreted language (i.e. its performance is lacking when compared
with compiled languages).

Figure 4.2 shows the time each algorithm needs to output a solution for a given OWPP
and 𝜅. The heuristics rank as expected by the complexity analysis, with the reference
CPEWwith full edges taking the longest time, CPEW being the fastest and the two OBEW
instances ranking close together not far from CPEW. The behavior of running time vs.
WTG number, however, is much closer to a linear relationship than the complexity anal-
ysis suggests.

Two conjectures about this discrepancy are proposed: a) this analysis is based onworst
case scenarios, which may be only triggered by WTG positions that are not useful from a
practical perspective; b) the higher exponents tasks within each heuristic represent a very
small fraction of the total computations performed by the algorithm, thus theywill become
noticeable only on much bigger problems. Points a and b are not mutually exclusive, so
a combination of them is also possible. Overall, these data do not challenge the assertion
that the proposed heuristics have the important property of polynomial complexity, which
makes big problems tractable within reasonable time-frames.

Just as a reference, the exact solutions of the global optimization took from a few min-
utes for the smaller OWPP to a few hours for the bigger ones. This duration is manageable
if only a few optimization runs are needed, but for an integrated optimization approach,
which requires the generation of thousands of optimal collection system layouts, a heuris-
tic solution will enable amuch faster convergence of themulti-disciplinary objective func-
tion. Afterwards, with the design space reduced to a few best projects, an exact global
optimum with guaranteed quality may be pursued.
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Figure 4.2: Running times for the EW extensions for the OWPP set (error bars are the std.
dev. across 𝜅 = [2, 15]).



38



CHAPTER5
Conclusion

This work engaged with the optimization of the investment cost of the collection system
layout, using the simplifying assumption of a single cable type. This reduces the task to a
total cable lengthminimization problem, whichmaps to the classic capacitatedminimum
spanning tree (CMST) problem with an additional constraint of cable crossing interdic-
tion.

Algorithms that build upon the classic Esau-Williams (EW) heuristic were presented
and its solutions analyzed and compared to reference ones. The Crossing Preventing EW
(CPEW) and the Obstacle Bypassing EW (OBEW) provide feasible solutions by comply-
ing to both the cable capacity limits and to the non-crossing constraint while keeping the
computational cost polynomial on the number ofWTG of the OWPP. The algorithmswere
applied to a working set of 11 OWPP – 7 actually built ones, 2 proposed and 2 synthetic –
with sizes ranging from 27 to 243 WTG. Cable capacities were varied from 2 to 15 WTG.
The implemented heuristics reach feasible layouts for all the pairs OWPP-capacity.

The use of Delaunay triangulation for the restriction of edges within EW in order to
reduce algorithm complexity was not mentioned in previous literature. The use of detour
nodes to improve solution quality was mentioned before, but implemented differently.
The rootlust bonus factor extends a preexisting idea, but innovates in involving the rela-
tive demand of the subtree (i.e. subtree size/𝜅) in its calculation, making it applicable in
different problem instances without the need to calibrate.

CPEWhas aworst case complexity of𝑂(𝑁2) and its layouts are, on average, 0.2% longer
than a trivial (and slow) implementation of edge intersection avoidance to the original
EW (naive heuristic). OBEW has a worst case complexity of 𝑂(𝑁3) and its solutions are,
on average, 1.3% shorter than the naive heuristic. With the introduction of the rootlust
bonus factor to EW’s savings calculation formula, the results become, on average, 1.9%
shorter than the naive approach. For comparison, the best optimal estimates (within 1%,
obtained with a mixed-integer linear programming solver) are, on average, 4.4% shorter
in total length than the naive EW approach.

The heuristics run within a fraction of a second on a regular PC for plants with a few
hundred WTG. This speed and the quality of the layouts obtained make them suitable for
application within the larger framework of integrated OWPP optimization.
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5.1 Future work
Some simplifying assumptions were made in the course of this work that compromise the
optimization in more complex OWPP instances. Some of them could be incorporated in
the implemented algorithm with additional effort. The most relevant ones would be the
consideration of multiple cable types with their respective capacity limit and linear cost,
as well as the avoidance of forbidden areas in the sea floor. The latter one seems like a
relatively simple extension of the OBEW algorithm.

Another line for further development is the improvement of the internal mechanisms
of the OBEWheuristic. One change that could enhance solution quality is to make detour
calculation a part of the edge search procedure. This way, prospective edges would chosen
and prioritized according to their actual savings (i.e. discounted the detour cost). The
savings calculation formulamay also be explored further, as its effect on themorphology of
EW-based layouts can be further tuned to make themmore similar to the globally optimal
ones.

Yet another possible research goal is to integrate the proposed heuristics with more so-
phisticatedmeta-heuristics orwith exact optimizationmethods as awarm-start for branch-
and-cut solvers.
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Additional data

Figure A.1: OWPPs used in this work in the format handle: number of WTG.



42 A Additional data

Figure A.2: Quality of the solutions for all OWPP sites and values of 𝜅 (baseline is CPEW
with full edges).
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Table A.1: Total length (m) obtained with the heuristics (thanet-ormonde).
(a) thanet

𝜅 CPEW OBEW 𝜆 = 0.6 GO

2 143152 135251 135256 139706
3 104643 100698 101915 102067
4 85891 84301 83745 83379
5 74412 73132 73678 72952
6 69577 67374 67002 66434
7 63908 62992 63073 61454
8 59987 59821 59472 58072
9 56428 56452 56429 55632
10 54494 54494 54076 53604
11 54338 54309 53842 52935
12 53124 53124 53305 52519
13 53052 53052 52925 52282
14 52745 52745 52508 51626
15 52745 52745 52508 51172

(b) dantysk
𝜅 CPEW OBEW 𝜆 = 0.6 GO

2 265768 256131 254537 258472
3 192505 185927 186309 186965
4 160739 152936 152424 150107
5 138628 131574 134114 128883
6 120659 117664 116354 114424
7 111723 109534 105885 105055
8 102636 101241 102051 97072
9 98844 96589 95825 93039
10 94667 93062 90226 88952
11 90355 89709 88621 84861
12 89480 87909 84559 81738
13 86847 86679 80611 79813
14 84843 84906 79285 76909
15 83197 82169 80027 76516

(c) horns
𝜅 CPEW OBEW 𝜆 = 0.6 GO

2 165152 157561 157561 159938
3 120651 115721 114887 114842
4 98971 93425 93952 92186
5 82046 81304 81304 79828
6 74568 73601 73525 70608
7 66559 66559 68103 64103
8 67222 63567 63374 59003
9 61434 60130 60145 55976
10 58884 58884 57713 53410
11 59245 59632 56912 53048
12 54979 54979 55098 50830
13 55640 53264 54809 50281
14 52929 52890 52890 49151
15 54112 52641 50746 49028

(d) anholt
𝜅 CPEW OBEW 𝜆 = 0.6 GO

2 473959 425419 425806 434938
3 333232 305412 305215 307601
4 259285 245771 250868 243877
5 245937 209453 209361 206265
6 196292 184376 183590 179735
7 174414 167522 167424 163795
8 167602 158857 163988 147645
9 156288 143911 147762 139203
10 148072 142438 139858 130374
11 135136 130183 133918 122180
12 138539 123801 125193 119065
13 129552 124114 118322 113833
14 118906 116974 115985 111616
15 120303 120304 114992 108125

(e) sands
𝜅 CPEW OBEW 𝜆 = 0.6 GO

2 249452 237228 237701 235908
3 181559 177049 175939 172952
4 153403 146206 145957 141460
5 131251 130896 131932 122476
6 121088 120024 120912 110983
7 109263 109798 112014 103170
8 102364 102870 103598 98437
9 100668 100273 100867 94451
10 99492 99510 95762 91457
11 99944 97798 93601 88469
12 94059 94354 92072 86681
13 92041 91578 88417 85176
14 87813 87813 89914 83223
15 86413 86155 86172 82324

(f) ormonde
𝜅 CPEW OBEW 𝜆 = 0.6 GO

2 39285 37964 37989 39145
3 29563 28645 28677 29324
4 24620 23857 23857 24780
5 22292 21546 21577 21429
6 20096 19650 19682 19474
7 18039 18039 18501 18039
8 16921 16921 16921 16921
9 16921 16921 16921 16921
10 16921 16921 16921 16921
11 16921 16921 16921 16739
12 16921 16921 16921 16760
13 16921 16921 16921 16703
14 16844 16844 16757 16733
15 16408 16408 16485 16408
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Table A.2: Total length (m) obtained with the heuristics (london-tess3).
(a) london

𝜅 CPEW OBEW 𝜆 = 0.6 GO

2 384252 367801 368612 371811
3 286171 274935 274309 273692
4 235923 229692 227441 226125
5 206252 200924 202100 195552
6 194402 186104 183641 178137
7 179178 174069 175941 168680
8 163423 169718 164962 161489
9 155038 154273 153372 –
10 150991 149839 150965 –
11 146802 150409 146033 –
12 147665 145898 143140 147080
13 144086 144644 141922 140399
14 142276 141997 139421 –
15 138325 137837 136969 –

(b) rbn
𝜅 CPEW OBEW 𝜆 = 0.6 GO

2 40600 40600 40614 40544
3 33843 34389 33836 33298
4 31079 31079 31126 29860
5 29444 29871 30131 28423
6 28245 28530 27863 27716
7 27385 27385 27480 27168
8 26801 26801 26896 26552
9 26552 26552 26615 26552
10 26449 26449 26481 26201
11 26201 26201 26264 26201
12 26201 26201 26264 26156
13 25805 25805 25837 25805

(c) rbs
𝜅 CPEW OBEW 𝜆 = 0.6 GO

2 148943 143761 144658 144927
3 116778 114001 114419 112191
4 98750 97129 100146 96763
5 92909 90983 90541 88555
6 86845 86845 86910 83608
7 85807 84983 82238 81373
8 83069 83522 82876 79779
9 80840 80840 80641 78342
10 78949 78949 79216 77816
11 79418 79418 78984 76847
12 79366 79366 78328 76461
13 78120 78120 77418 75934
14 78589 78589 76881 75684
15 76817 76817 76354 75684

(d) tess
𝜅 CPEW OBEW 𝜆 = 0.6 GO

2 248179 246068 246068 –
3 190328 186860 186860 186885
4 167039 167039 157102 156969
5 151084 151084 151289 139734
6 139532 139532 134106 129458
7 137995 135860 128780 125185
8 134106 134106 127462 121802
9 128446 127846 125912 119283
10 120903 120903 118706 118023
11 120753 120753 118251 116942
12 120219 120219 120219 115860
13 119665 119665 118557 115778
14 119665 119665 118557 114778
15 116942 116942 116942 114251

(e) tess3
𝜅 CPEW OBEW 𝜆 = 0.6 GO

2 479594 470181 470181 –
3 369822 365313 363672 362392
4 324262 316009 313133 306837
5 289191 288693 287341 275707
6 268312 268312 267340 260145
7 259743 259743 258187 254498
8 259072 259072 256015 247119
9 255430 255430 254765 244211
10 251685 251685 250555 242302
11 250506 250506 243478 241070
12 248147 248147 243478 –
13 241070 241070 240424 241102
14 241070 241070 240633 239865
15 241070 241070 240633 –
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